Advertisement

Deciphering the Possible Role of Strain Path on the Evolution of Microstructure, Texture, and Magnetic Properties in a Fe-Cr-Ni Alloy

  • 313 Accesses

  • 1 Citations

Abstract

In the present work, the influence of strain path on the evolution of microstructure, crystallographic texture, and magnetic properties of a two-phase Fe-Cr-Ni alloy was investigated. The Fe-Cr-Ni alloy had nearly equal proportion of austenite and ferrite and was cold rolled up to a true strain of 1.6 (thickness reduction) using two different strain paths—unidirectional rolling and multi-step cross rolling. The microstructures were characterized by scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD), while crystallographic textures were determined using X-ray diffraction. For magnetic characterization, B-H loops and M-H curves were measured and magnetic force microscopy was performed. After unidirectional rolling, ferrite showed the presence of strong α-fiber (rolling direction, RD//〈110〉) and austenite showed strong brass type texture (consisting of Brass (Bs) ({110}〈112〉), Goss ({110}〈001〉), and S ({123}〈634〉)). After multi-step cross rolling, strong rotated cube ({100}〈110〉) was developed in ferrite, while austenite showed ND (normal direction) rotated brass (~ 10 deg) texture. The strain-induced martensite (SIM) was found to be higher in unidirectionally rolled samples than multi-step cross-rolled samples. The coherently diffracting domain size, micro-strain, coercivity, and core loss also showed a strong correlation with strain and strain path. More strain was partitioned into austenite than ferrite during deformation (unidirectional as well as cross rolling). Further, the strain partitioning (in both austenite and ferrite) was found to be higher in unidirectionally rolled samples.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    R. Gunn: Duplex Stainless Steels, Abington Publishing, Cambridge, 1997.

  2. 2.

    J. Charles: Steel Res. Int., 2008, vol. 79, pp. 455–65.

  3. 3.

    R.K. Ray, and S. Suwas: Crystallographic Texture of Materials, Springer, Manchester, 2014.

  4. 4.

    A. Kumar, R.K. Khatirkar, D. Chalapathi, G. Kumar and S. Suwas: Metall. Mater. Trans. A, 2017, vol. 48 pp. 2349–62.

  5. 5.

    W. Solano-Alvarez, H.F.G. Abreu, M.R. Da Silva and M.J. Peet: J. Magn. Magn. Mater., 2015, vol. 378, pp. 200–05.

  6. 6.

    A. Kashiwar, N.P. Vennela, S.L. Kamath and R.K. Khatirkar: Mater. Charact., 2012, vol. 74, pp. 55–63.

  7. 7.

    S.S.M. Tavares, J.M. Pardal, M.R. da Silva and C.A.S. de Oliveira: Mater. Res., 2014, vol. 17, pp. 381–85.

  8. 8.

    P.L. Mangonon and G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1577–86.

  9. 9.

    K. Spencer: The Work Hardening of Austenitic Stainless Steel, Applied to the Fabrication of High-Strength Conductors, McMaster University, Hamilton, 2004.

  10. 10.

    M. Breda, K. Brunelli, F. Grazzi, A. Scherillo and I. Calliari: Metall. Mater. Trans. A, 2014, vol. 46, pp. 577–86.

  11. 11.

    D.C.T. Costa, M.C. Cardoso, G.S. da Fonseca, L.P. Moreira, M. Martiny and S. Mercier: Mater. Sci. Forum., 2016, vol. 869, pp. 490–96.

  12. 12.

    S. Pramanik, S. Bera, and S.K. Ghosh: Steel Res. Int., 2014, vol. 85, pp. 776–83.

  13. 13.

    J. Niagaj and Ł. Mazur: Arch. Metall. Mater., 2012, vol. 57, pp. 16–18.

  14. 14.

    J. Talonen and H. Hanninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

  15. 15.

    B.D. Cullity: Elements of X-ray Diffraction, Addison-Wesley Publishing Company Inc., Boston, 1978.

  16. 16.

    T.J.A. Reis, J.R.G. Carneiro, J.M.C. Vilela, and M.S. Andrade: Identification Of Strain-Induced Martensite Phase In Drawn Austenitic Stainless Steels With SPM Techniques, 2014.

  17. 17.

    A. Dias and M.S. Andrade: Appl. Surf. Sci., 2000, vol. 161 pp. 109–14.

  18. 18.

    B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials,Wiley, Hoboken, NJ, 2009.

  19. 19.

    C.W. Chen: Magnetism and Metallurgy of Soft Magnetic Materials, Vol. 15, North-Holland Publishing Company, New York, 1977.

  20. 20.

    S. Baldo and I. Mészáros: J. Mater. Sci., 2010,vol. 45, pp. 5339–46.

  21. 21.

    C. Donadille, R. Valle, P. Dervin, and R. Penelle: Acta Metall., 1989, vol. 37, pp. 1547–71.

  22. 22.

    T. Leffers and R.K. Ray: ProgrMater. Sci., 2009, vol. 54, pp. 351–96.

  23. 23.

    R. Madhavan, R.K. Ray and S. Suwas: Acta Mater., 2014, vol. 78, pp. 222–35.

  24. 24.

    N. Jia, R.L. Peng, Y.D. Wang and X. Zhao: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3615–24.

  25. 25.

    R. Madhavan, R.K. Ray and S. Suwas: Philos. Mag., 2016, vol. 96, pp. 3177-99.

  26. 26.

    T. Leffers and D.J. Jensen: Textures Microstruct., 1988, vol. 8, pp. 467–80.

  27. 27.

    G. Wassermann: Z. Met., 1963, vol. 54, pp. 61–65.

  28. 28.

    W. B. Hutchinson, B.J. Duggan and M. Hatherly: Met. Technol., 1979, vol. 6, pp. 398–03.

  29. 29.

    K. Wierzbanowski, M. Wroński and T. Leffers: Crit. Rev. Solid State Mater. Sci., 2014, vol. 39, pp. 391–22.

  30. 30.

    B.J. Duggan, M. Hatherly, W.B. Hutchinson, and P.T. Wakefield: Met. Sci., 1978, vol. 12, pp. 343–51.

  31. 31.

    A. Kumar, R.K. Khatirkar, D. Chalapathi, N. Bibhanshu and S. Suwas: Philos. Mag., 2017, Vol. 97, No. 23, pp. 1939–62.

  32. 32.

    S.R. Kalidindi, R.D. Doherty and C. Necker: Acta Mater., 2000, vol. 48, pp. 2665–73.

  33. 33.

    S.R. Kalidindi: Int. J. Plast., 2001, vol. 17, pp. 837–60.

  34. 34.

    N. Jia, F. Roters, P. Eisenlohr, C. Kords and D. Raabe: Acta Mater., 2012, vol. 60, pp. 1099–1115.

  35. 35.

    L. Anand and C. Su: J. Mech. Phys. Solids., 2005, vol. 53, pp. 1362–96.

  36. 36.

    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, 2015.

  37. 37.

    A. Belyakov, Y. Kimura, and K. Tsuzaki: Acta Mater., 2006, vol. 54, pp. 2521–32.

  38. 38.

    S. Suwas and A.K. Singh: Mater. Sci. Eng. A, 2003, vol. 356, pp. 368–71.

  39. 39.

    S. Chhann, D. Solas, A.L. Etter, R. Penelle and T. Baudin: Mater. Sci. Forum., 2007, vol. 550, pp. 551–56.

  40. 40.

    J. Sidor, A. Miroux, R. Petrov and L. Kestens: Acta Mater., 2008, vol. 56, pp. 2495–07.

  41. 41.

    P.P. Bhattacharjee, M. Zaid, G.D. Sathiaraj, and B. Bhadak: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2180–91.

  42. 42.

    J.P. Davim: Modern Manufacturing Engineering, Springer Int. Publis., Switzerland, 2011.

  43. 43.

    M.S.J. Hashmi, Comprehensive materials processing, Elsevier, Oxford, 2013.

  44. 44.

    J.J. Moverare and M. Odeń: Mater. Sci. Eng. A, 2002, vol. 337 pp. 25–38.

  45. 45.

    S. Suwas, A.K. Singh, K.N. Rao and T. Singh: Z. Met., 2002, vol. 93 pp. 1313–19.

  46. 46.

    N.P. Gurao, S. Sethuraman and S. Suwas: Mater. Sci. Eng. A, 2011, vol. 528, pp 7739–50.

  47. 47.

    P.P. Bhattacharjee, S. Saha and J.R. Gatti: J. Mater. Eng. Perform., 2014, vol. 23, pp. 458–68.

  48. 48.

    L. Kestens and S. Jacobs: Stress. Microstruct., 2008, vol. 2008, pp 1-9.

  49. 49.

    C.G. Oertel, I. Hünsche, W. Skrotzki, A. Lorich, W. Knabl, J. Resch and Th. Trenkwalder: Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 722–27.

  50. 50.

    S. Wronski, M. Wrobel, A. Baczmanski and K. Wierzbanowski: Mater. Charact., 2013, vol. 77 pp. 116–26.

  51. 51.

    R. Garg, S. Ranganathan, and S. Suwas: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4582–92.

  52. 52.

    M. Zaid and P.P. Bhattacharjee: Mater. Charact., 2014, vol. 96, pp. 263–72.

  53. 53.

    A. Bocker, H. Klein and H.J. Bunge: Textures Microstruct., 1990, vol. 12, pp. 155–74.

  54. 54.

    G.F. Vander Voort and W. Baldwin: Metallography and Microstructures Handbook, ASM Int., Novelty, USA, vol. 9, 2004.

  55. 55.

    OIM: Analysis Version 7.2. User Manual, TexSEM Laboratories Inc., Draper, 2013.

  56. 56.

    A.J. Schwartz, M. Kumar, A.L. Adams, and D.P. Field: Electron Backscatter Diffraction in Materials Science, Kluwer Academic/Plenum Publishers, Springer, New York, 2000.

  57. 57.

    F. Xlongt and B.A. Parker: Textures Microstruct., 1984, vol. 6, pp. 125–35.

  58. 58.

    P. Van Houtte: The ‘‘MTM-FHM’’ Software System Version 2, 2009.

  59. 59.

    R.K. Khatirkar and B.S. Murty: Mater. Chem. Phys., 2010, vol. 123, pp. 247–53.

  60. 60.

    M. Kumagai, M. Imafuku and S. Ohya: ISIJ Int., 2014, vol. 54, pp. 206–11.

  61. 61.

    R. Unnikrishnan, A. Kumar, R.K. Khatirkar, S.K. Shekhawat and S.G. Sapate: Mater. Chem. Phys., 2016, vol 183, pp. 339–48.

  62. 62.

    H.J. Bunge : Texture Cryst. Solids, 1989, vol. 11, pp. 75–91.

  63. 63.

    R. Ranjan, D.C. Jiles and P. Rastogi: IEEE Trans. Magn., 1987, vol.23, pp. 1869–76.

  64. 64.

    R. Madhavan and S. Suwas: Acta Mater., 2016, vol. 121, pp. 46–58.

  65. 65.

    D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig: Acta Mater., 2015, vol. 100, pp 178–90.

  66. 66.

    S.S.M. Tavares, J.M. Neto, M.R. da Silva, I.F. Vasconcelos and H.F.G. de Abreu: Mater. Charact., 2008, vol. 59, pp. 901–04.

  67. 67.

    J. Tobisch and A. Mucklich: Texture, 1974, vol. 1, pp. 211–31.

  68. 68.

    H. Hu and R.S. Cline: J. Appl. Phys.,1961, vol. 32, pp. 760–63.

  69. 69.

    N. Jia, P. Eisenlohr, F. Roters, D. Raabe and X. Zhao: Acta Mater., 2012, vol. 60, pp. 3415–34.

  70. 70.

    R. Garg, N.P. Gurao, S. Ranganathan and S. Suwas: Philos. Mag., 2011, vol. 91, pp. 4089–08.

  71. 71.

    J. Mishra, S. Sahni, R. Sabat, V.D. Hiwarkar and S.H. Sahoo: Mater. Res., 2016, vol. 20, pp. 218-24.

Download references

Acknowledgments

The authors are thankful to the Director, VNIT Nagpur for his constant encouragement to publish this paper. The authors acknowledge the use of ‘National Facility of Texture & OIM (a DST-IRPHA facility)’ for EBSD and bulk texture measurements. The authors also acknowledge the use of ‘Centre for Nano Science and Engineering (CeNSE), IISc Bangalore’, for MFM measurements. One of the authors RKK wishes to acknowledge Science and Engineering Research Board (SERB) for financial assistance (Grant No. SB/FTP/ETA-0188/2014) to carry out this work. RKK also wishes to acknowledge University Grant Commission’s Networking Resource Centre for Materials (UGC-NRCM) for financial assistance.

Author information

Correspondence to Rajesh Kisni Khatirkar.

Additional information

Manuscript submitted September 2, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Khatirkar, R.K., Gupta, A. et al. Deciphering the Possible Role of Strain Path on the Evolution of Microstructure, Texture, and Magnetic Properties in a Fe-Cr-Ni Alloy. Metall and Mat Trans A 49, 3402–3418 (2018). https://doi.org/10.1007/s11661-018-4714-0

Download citation