Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 8, pp 3283–3292 | Cite as

Effect of Modifying the Chemical Composition on the Properties of Spring Steel

  • B. PodgornikEmail author
  • F. Tehovnik
  • J. Burja
  • B. Senčič
Article

Abstract

The aim of the present work was to experimentally examine the effect of modifying the chemical composition on the properties of Si-Cr-V spring steel. The investigation was based on a commercial 51CrV4 spring steel, with its composition modified in terms of Si, Cr, and V contents, targeting a yield strength of over 2000 MPa in the tempered condition. The experimental evaluation included decarburization and scale resistance, tensile properties, fracture toughness, and fatigue resistance. The results show that the simulation software gave greatly exaggerated values when it comes to the yield-strength prediction and the influence of the steel’s composition. In terms of experimental results, the most influential element in terms of improving the decarburization resistance, the yield and tensile strengths, the fracture toughness, and most importantly the fatigue limit and the fatigue life is Si, followed by Cr, while increasing the amount of V has a mainly negative effect. However, when the Si content exceeds 1.6 pct, this leads to an increased decarburization depth and a drop in the tensile properties.

Notes

Acknowledgment

The authors acknowledge the financial support of the Slovenian Research Agency (Research Core Funding No. P2-0050) and the company Štore Steel d.o.o.

References

  1. 1.
    P. Mårtensson, D. Zenkert and M. Åkermo: Composite Structures, 2015, vol. 134, pp. 572-578.CrossRefGoogle Scholar
  2. 2.
    Do-Hyoung Kima, Hyun-Gyung Kimb and Hak-Sung Kim: Composite Structures, 2015, vol. 131, pp. 742-752.CrossRefGoogle Scholar
  3. 3.
    R.K. Rathore, E.N. Karlus and R.L. Himte: International Journal of Engineering Research & Technology, 2014, vol. 3, pp. 1391-1396.Google Scholar
  4. 4.
    F. Perrard, F. Charvieux, and J. Languillaume: A new spring steel with improved ductility dedicated for high strength parabolic leaf springs. Proc. 2nd Int. Conf. Super-High Strength Steels, Peschiera del Garda, Italy, 2010.Google Scholar
  5. 5.
    S. Choi: Optimization of Microstructure and Properties of High Strength Spring Steel, Ph.D. Thesis, Posco, Korea, 2011.Google Scholar
  6. 6.
    A. Ardehali Barani, D. Ponge and D. Raabe: Materials Science and Engineering A, 2006, vol. 426, pp. 194-201.CrossRefGoogle Scholar
  7. 7.
    Zhang Chao-lei, Liu Ya-zheng, Jiang Chao and Xiao Jun-fu: Journal of Iron and Steel Research, International, 2011, vol. 18, pp. 49-53.CrossRefGoogle Scholar
  8. 8.
    B. Podgornik, V. Leskovšek, M. Godec and B. Senčič: Materials Science and Engineering A, 2014, vol. 599, pp. 81-86.CrossRefGoogle Scholar
  9. 9.
    W.J. Nam, C.S. Lee and D.Y. Ban: Materials Science and Engineering A, 2000, vol. 289, pp. 8-17.CrossRefGoogle Scholar
  10. 10.
    C.S. Lee, K.A. Lee, D.M. Li, S.J. Yoo and W.J. Nam: Materials Science and Engineering A, 1998, vol. 241, pp. 30-37.CrossRefGoogle Scholar
  11. 11.
    A. Ardehali Barani, F. Li, P. Romano, D. Ponge and D. Raabe: Materials Science and Engineering A, 2007, vol. 463, pp. 138-146.CrossRefGoogle Scholar
  12. 12.
    J.H. Ai, T.C. Zhao, H.J. Gao, Y.H. Hu and X.S. Xie: Journal of Materials Processing Technology, 2005, vol. 160, pp. 390-395.CrossRefGoogle Scholar
  13. 13.
    P. Ganesh, R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Hedaoo, P. Tiwari, L.M. Kukreja, S.M. Oak, S. Dasari and G. Raghavendra: Optics and Lasers in Engineering, 2012, vol. 50, pp. 678-686.CrossRefGoogle Scholar
  14. 14.
    B. Podgornik, M.Torkar, J.Burja, M.Godec and B.Senčič: Materials Science and Engineering A, 2015, vol. 638, pp. 183-189.CrossRefGoogle Scholar
  15. 15.
    Jun Chen, Meng-yang Lv, Zhen-yu Liu, Guo-dong Wang: Metallurgical and Materials Transactions A, 2016, vol. 47, pp. 2300-2312.CrossRefGoogle Scholar
  16. 16.
    Yi-hong Nie, Wei-jun Hui, Wan-tang Fu and Yu-qing Weng: Journal of Iron and Steel Research International, 2007, vol. 14, pp. 53-59.CrossRefGoogle Scholar
  17. 17.
    M. Assefpour-Dezfuly and A. Brownrigg: Metallurgical and Materials Transactions A, 1989, vol. 20, pp. 1951-1959.CrossRefGoogle Scholar
  18. 18.
    B. Podgornik, B. Žužek and V. Leskovšek: Materials Performance and Characterization, 2014, vol. 3, pp. 1-17.Google Scholar
  19. 19.
    S. Wei, Z. Tingshi, G. Daxing, L. Dunkang, L. Poliang and Q. Xiaoyun: Engineering Fracture Mechanics, 1982, vol. 16, pp. 69-82.CrossRefGoogle Scholar
  20. 20.
    N. Saito, K. Abiko, H. Kimura: Materials Transaction, JIM, 1995, vol. 36, pp. 601-609.CrossRefGoogle Scholar
  21. 21.
    Yang-bo Liu, Wei Zhang, Qian Tong, Qi-song Sun: Journal of Iron and Steel Research, International, 2016, vol. 23, pp. 1316-1322.CrossRefGoogle Scholar
  22. 22.
    C. Mardon: The Austenitisation and Decarburisation of High Silicon Spring Steels, Ph.D. Thesis, University of Canterbury, Christchurch, 1998.Google Scholar
  23. 23.
    C.W. Tuck: Corrosion Science, 1965, Vol. 5, pp. 631-634.CrossRefGoogle Scholar
  24. 24.
    R. Pradhan: Continuous Annealing of Steel, in: ASM Handbook, vol. 4, Heat treating, 10th ed., ASM International, 1998, pp. 122–46.Google Scholar
  25. 25.
    W.-J. Nam, H.-C. Choi: Journal Materials Science and Technology, 1997, Vol. 13, pp. 568-574.CrossRefGoogle Scholar
  26. 26.
    W.S. Owen: Trans. ASM, 1954, Vol. 46, pp. 812-829.Google Scholar
  27. 27.
    Hardenable Alloy Steels (Total Materia, Nov. 2002) http://www.totalmateria.com/page.aspx?ID=CheckArticle&site=kts&LN=EN&NM=91. Accessed 25 March 2018.
  28. 28.
    T.N. Baker: Ironmaking & Steelmaking, 2016, Vol. 43, pp. 264-307.CrossRefGoogle Scholar
  29. 29.
    S.T. Furr: Journal of Basic Engineering, ASME, 1972, Vol. 94, pp. 223-227.CrossRefGoogle Scholar
  30. 30.
    J.W. Morris Jr., Z. Guo, C.R. Krenn, Y.-H. Kim: ISIJ International, 2001, Vol. 41, pp. 599–611.CrossRefGoogle Scholar
  31. 31.
    M.E. Natishan: Mechanisms of strength and toughness in a microalloyed precipitation hardened steels, David Taylor Research Center, Bethesda, Maryland, 1989.Google Scholar
  32. 32.
    E. Gariboldi, W. Nicodemi, G. Silva, M. Vedani: Metallurgical Science and Technology, 1994, Vol. 11, pp. 11-21.Google Scholar
  33. 33.
    M. Ayada, M. Yuga, N. Tsuji, Y. Saito, A. Yoneguti: ISIJ International, 1998, Vol. 38, pp. 1022-1031.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • B. Podgornik
    • 1
    Email author
  • F. Tehovnik
    • 1
  • J. Burja
    • 1
  • B. Senčič
    • 2
  1. 1.Institute of Metals and TechnologyLjubljanaSlovenia
  2. 2.ŠTORE STEEL d.o.oŠtoreSlovenia

Personalised recommendations