Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 4029–4041 | Cite as

Creep Property and Phase Stability of Sulfur-Doped Ni-Base Single-Crystal Superalloys and Effectiveness of CaO Desulfurization

  • Satoshi Utada
  • Yuichiro Joh
  • Makoto Osawa
  • Tadaharu Yokokawa
  • Takuya Sugiyama
  • Toshiharu Kobayashi
  • Kyoko Kawagishi
  • Shinsuke Suzuki
  • Hiroshi Harada
Topical Collection: Superalloys and Their Applications
  • 286 Downloads
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications

Abstract

The direct and complete recycling method for Ni-base superalloy is being developed and studied to reduce the material cost for cost-effective operation of gas turbine systems. Understanding the effect of sulfur contamination is important to determine allowable sulfur content after the recycling. However, in the case of single-crystal superalloys, this effect on material properties is not well known except for the detrimental effect on the oxidation resistance. In the present study, creep tests, aging tests, and cyclic oxidation tests have been performed on PWA1484 with varying sulfur content. The increasing sulfur content has been found to correlate with degradation of properties evaluated here. It is observed that the decrease in creep life in PWA1484 due to sulfur doping is primarily due to coarsening of the γ/γ′ interfacial dislocation network, increase in precipitation kinetics of topologically closed-packed phase, and decrease in oxidation resistance. For recycling purposes, a CaO crucible was used in the casting process, which successfully decreased the sulfur level in the alloy, and the resulting material showed comparable or even better properties in comparison to the low sulfur content material.

Notes

ACKNOWLEDGMENTS

The authors are grateful to Dr. M. Yuyama, Superalloy Research Group, NIMS, for technical assistance with the creep tests. We also thank Drs. S. Kawada, S. Ito, and A. Ishitoya, Materials Analysis Station, NIMS, for chemical analysis. A part of this work was supported by the NIMS Microstructural Characterization Platform (NMCP) as a program of the “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We are grateful to Ms. N. Isaka, NMCP, NIMS, and Mr. K. Ogawa, Vibration Control Materials Group, NIMS, for technical support in the TEM observation. We also thank Ms. M. Fazal, Institut Pprime, for her diligent proofreading of this article. This research was financially supported by Japan Science and Technology (JST), under the Advanced Low Carbon Technology Research and Development Program (ALCA) project “Development of direct and complete recycling method for superalloy turbine aerofoils.” Grant Number JPNJAL1302.

References

  1. 1.
    K. Kawagishi, A. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi, and H. Harada: Superalloys 2012, TMS, Seven Springs, Champion, PA, 2012, pp. 189–95.CrossRefGoogle Scholar
  2. 2.
    T. Yokokawa, H. Harada, Y. Mori, K. Kawagishi, Y. Koizumi, T. Kobayashi, M. Yuyama, and S. Suzuki: Superalloys 2016, TMS, Seven Springs, Champion, PA, 2016, pp. 123–30.CrossRefGoogle Scholar
  3. 3.
    S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Kobayashi, K. Kawagishi, S. Suzuki, and H. Harada: Int. Gas Turbine Congr. 2015 Tokyo, 2015, pp. 1039–43.Google Scholar
  4. 4.
    S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Kobayashi, K. Kawagishi, S. Suzuki, and H. Harada: Superalloys 2016, TMS, Seven Springs, Champion, PA, 2016, pp. 591–99.Google Scholar
  5. 5.
    R.T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, pp. 1–24.CrossRefGoogle Scholar
  6. 6.
    R. Schlatter: Superalloys 1972, Seven Springs, Champion, PA, 1972, pp. A1–40.Google Scholar
  7. 7.
    M.A. Smith, W.E. Frazier, and B.A. Pregger: Mater. Sci. Eng. A, 1995, vol. A203, pp. 388–98.CrossRefGoogle Scholar
  8. 8.
    C. Sarioglu, C. Stinner, J.R. Blachere, N. Birks, F.S. Pettit, G.H. Meier, and J.L. Smialek: Superalloys 1996, TMS, Seven Springs, Champion, PA, 1996, pp. 71–81.Google Scholar
  9. 9.
    J.L. Smialek: ASME 1996 Int. Gas Turbine and Aeroengine Congr. Exhib., 1996, p. V005T12A016.Google Scholar
  10. 10.
    J.L. Smialek and B.A. Pint: Mater. Sci. Forum, 2001, vols. 369–372, pp. 459–66.CrossRefGoogle Scholar
  11. 11.
    Y. Joh, T. Kobayashi, T. Yokokawa, K. Kawagishi, M. Osawa, S. Suzuki, and H. Harada: 10th Liege Conf.: Materials for Advanced Power Engineering 2014, 2014, pp. 538–44.Google Scholar
  12. 12.
    Y. Joh, S. Utada, M. Osawa, T. Kobayashi, T. Yokokawa, K. Kawagishi, S. Suzuki, and H. Harada: Mater. Trans., 2016, vol. 57, pp. 1305–08.CrossRefGoogle Scholar
  13. 13.
    L. Peng, P. Peng, D.D. Wen, Y.G. Liu, H. Wei, X.F. Sun, and Z.Q. Hu: Model. Simul. Mater. Sci. Eng., 2011, vol. 19, p. 65002.CrossRefGoogle Scholar
  14. 14.
    K. Kawagishi, R. Zhu, T. Yokokawa, T. Kobayashi, Y. Koizumi, M. Yuyama, and H. Harada: 10th Liege Conf.: Materials for Advanced Power Engineering 2014, 2014, pp. 532–37.Google Scholar
  15. 15.
    K. Kawagishi, T. Yokokawa, T. Kobayashi, Y. Koizumi, M. Sakamoto, M. Yuyama, H. Harada, I. Okada, M. Taneike, and H. Oguma: Superalloys 2016, TMS, Seven Springs, Champion, PA, 2016, pp. 115–22.CrossRefGoogle Scholar
  16. 16.
    A.D. Cetel and D.N. Duhl: Superalloys 1988, Seven Springs, Champion, PA, 1988, pp. 235–44.Google Scholar
  17. 17.
    R.J. Fruehan: Metall. Trans. B, 1978, vol. 9B, pp. 287–92.CrossRefGoogle Scholar
  18. 18.
    T. Degawa and T. Ototani: Tetsu-to-Hagané, 1987, vol. 73, pp. 1684–90.CrossRefGoogle Scholar
  19. 19.
    T. Iguchi, Y. Kishimoto, S. Utada, S. Suzuki, Y. Mori, T. Yokokawa, H. Harada, T. Kobayashi, and K. Kawagishi: Waseda University and National Institute for Materials Science, Japan, unpublished research, 2018.Google Scholar
  20. 20.
    T. Yamagata, H. Harada, S. Nakazawa, M. Yamazaki, and Y.G. Nakagawa: Superalloys 1984, Seven Springs, Champion, PA, 1984, pp. 157–66.Google Scholar
  21. 21.
    R. Darolia, D.F. Lahrman, R.D. Field, and R. Sisson: Superalloys 1988, Seven Springs, Champion, PA, 1988, pp. 255–64.Google Scholar
  22. 22.
    J.X. Zhang, T. Murakumo, H. Harada, and Y. Koizumi: Scripta Mater., 2003, vol. 48, pp. 287–93.CrossRefGoogle Scholar
  23. 23.
    J. Zhang, J. Wang, H. Harada, and Y. Koizumi: Acta Mater., 2005, vol. 53, pp. 4623–33.CrossRefGoogle Scholar
  24. 24.
    A.F. Giamei and D.L. Anton: Metall. Trans. A, 1985, vol. 16A, pp. 1997–2005.CrossRefGoogle Scholar
  25. 25.
    W.Z. Wang, T. Jin, J.L. Liu, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2008, vol. 479, pp. 148–56.CrossRefGoogle Scholar
  26. 26.
    E. Mabruri, S. Sakurai, Y. Murata, T. Koyama, and M. Morinaga: Mater. Trans., 2008, vol. 49, pp. 792–99.CrossRefGoogle Scholar
  27. 27.
    H. Mughrabim, W. Schneider, V. Sass, and C. Lang: 10th International Conference on the Strength of Materials, 1994, pp. 705–08.Google Scholar
  28. 28.
    V. Seetharaman and A.D. Cetel: Superalloys 2004, TMS, Seven Springs, Champion, PA, 2004, pp. 207–14.CrossRefGoogle Scholar
  29. 29.
    A. Srivastava, S. Gopagoni, A. Needleman, V. Seetharaman, A. Staroselsky, and R. Banerjee: Acta Mater., 2012, vol. 60, pp. 5697–5711.CrossRefGoogle Scholar
  30. 30.
    T. Murakumo, Y. Koizumi, K. Kobayashi, and H. Harada: Superalloys 2004, TMS, Seven Springs, Champion, PA, 2004, pp. 155–62.CrossRefGoogle Scholar
  31. 31.
    M. Pessah, P. Caron, and T. Khan: Superalloys 1992, TMS, Seven Springs, Champion, PA, 1992, pp. 567–76.Google Scholar
  32. 32.
    C. Rae, M. Karunaratne, C. Small, R. Broomfield, C. Jones, and R. Reed: Superalloys 2000, TMS, Seven Springs, Champion, PA, 2000, pp. 767–76.CrossRefGoogle Scholar
  33. 33.
    S. Tin, T.M. Pollock, and W.T. King: Superalloys 2000, TMS, Seven Springs, Champion, PA, 2000, pp. 201–10.CrossRefGoogle Scholar
  34. 34.
    S. Tin and T.M. Pollock: Mater. Sci. Eng. A, 2003, vol. 348, pp. 111–21.CrossRefGoogle Scholar
  35. 35.
    L.R. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Lett., 2004, vol. 58, pp. 2290–94.CrossRefGoogle Scholar
  36. 36.
    H.D. Brody and M.C. Flemings: Trans. TMS-AIME, 1966, vol. 236, pp. 615–24.Google Scholar
  37. 37.
    A.-C. Yeh, A. Sato, T. Kobayashi, and H. Harada: Mater. Sci. Eng. A, 2008, vol. 490, pp. 445–51.CrossRefGoogle Scholar
  38. 38.
    K. Cheng, C. Jo, T. Jin, and Z. Hu: J. Alloys Compd., 2011, vol. 509, pp. 7078–86.CrossRefGoogle Scholar
  39. 39.
    M. Allart, F. Christien, and R. Le Gall: Acta Mater., 2013, vol. 61, pp. 7938–46.CrossRefGoogle Scholar
  40. 40.
    I.L. Lomaev, D.L. Novikov, S. V Okatov, Y.N. Gornostyrev, A. Cetel, M. Maloney, R. Montero, and S.F. Burlatsky: Acta Mater., 2014, vol. 67, pp. 95–101.CrossRefGoogle Scholar
  41. 41.
    J.J. DeBarbadillo: Superalloys 1976, Seven Springs, Champion, PA, 1976, pp. 95–107.Google Scholar
  42. 42.
    T. Fujioka, M. Kinugasa, and S. Iizumi: Superalloys 1976, Seven Springs, Champion, PA, 1976, pp. 159–69.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Satoshi Utada
    • 1
    • 2
  • Yuichiro Joh
    • 1
    • 2
  • Makoto Osawa
    • 2
  • Tadaharu Yokokawa
    • 2
  • Takuya Sugiyama
    • 1
    • 2
  • Toshiharu Kobayashi
    • 2
  • Kyoko Kawagishi
    • 2
  • Shinsuke Suzuki
    • 1
  • Hiroshi Harada
    • 2
  1. 1.Waseda UniversityTokyoJapan
  2. 2.The National Institute for Materials Science (NIMS)Tsukuba Science CityJapan

Personalised recommendations