Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 4394–4397 | Cite as

Investigation of Size Effects in Slip Strength of Titanium Alloys: α Nodule Size Dependence of the Critical Resolved Shear Stress

  • S. Hémery
  • P. Villechaise
Communication
  • 56 Downloads

Abstract

Reported critical resolved shear stress (CRSS) values for basal and prismatic slip of titanium alloys are presently reviewed. Despite different average compositions, CRSS variations appear as mostly related to the α nodule size. Investigations of tensile tests performed in a scanning electron microscope reveal that the underlying size effect results from back stress generated by dislocations piling up at nodule boundaries. A relationship is proposed to predict CRSS for alloys with a given nodule size.

References

  1. 1.
    E.O. Hall: Proc. Phys. Soc. London B, 1951, vol. 64, pp. 747–53.CrossRefGoogle Scholar
  2. 2.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.Google Scholar
  3. 3.
    D. Lunt, J.Q. da Fonseca, D. Rugg, and M. Preuss: Mater. Sci. Eng. AStruct., 2017, vol. 680, pp. 444–53.CrossRefGoogle Scholar
  4. 4.
    M. Kasemer, M.P. Echlin, J.C. Stinville, T.M. Pollock, and P. Dawson: Acta Mater., 2017, vol. 136, pp. 288–02.CrossRefGoogle Scholar
  5. 5.
    J.C. Williams, R.G. Baggerly, and N.E. Paton: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 837–50.CrossRefGoogle Scholar
  6. 6.
    V. Hasija, S. Ghosh, M.J. Mills, and D.S. Joseph: Acta Mater., 2003, vol. 51, pp. 4533–49.CrossRefGoogle Scholar
  7. 7.
    Z. Zhang, T.-S. Jun, T.B. Britton, and F.P.E. Dunne: J. Mech. Phys. Solids, 2016, vol. 95, pp. 393–10.CrossRefGoogle Scholar
  8. 8.
    F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2005, vol. 53, pp. 555–67.CrossRefGoogle Scholar
  9. 9.
    G. Venkataramani, D. Deka, and S. Ghosh: J. Eng. Mater. Technol., 2006, vol. 128, pp. 356–65.CrossRefGoogle Scholar
  10. 10.
    S.L. Raghunathan, A.M. Stapleton, R.J. Dashwood, M. Jackson, and D. Dye: Acta Mater., 2007, vol. 55, pp. 6861–72.CrossRefGoogle Scholar
  11. 11.
    S. Hémery and P. Villechaise: Mater. Sci. Eng. AStruct., 2017, vol. 697, pp. 177–83.CrossRefGoogle Scholar
  12. 12.
    S. Hémery and P. Villechaise: Acta Mater., 2017, vol. 141, pp. 285–93.CrossRefGoogle Scholar
  13. 13.
    D.C. Pagan, P.A. Shade, N.R. Barton, J.-S. Park, P. Kenesei, D.B. Menasche, and J.V. Bernier: Acta Mater., 2017, vol. 128, pp. 406–17.CrossRefGoogle Scholar
  14. 14.
    S. Hémery, T. Dang, L. Signor, and P. Villechaise: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 2048–56.CrossRefGoogle Scholar
  15. 15.
    J. Qiu, Y. Ma, J. Lei, Y. Liu, A. Huang, D. Rugg, and R. Yang: Metall. Mater. Trans. A, 2014, vol. 45, pp. 6075–87.CrossRefGoogle Scholar
  16. 16.
    G. Charrier, M. Dehmas, M. Descoins, D. Mangelinck, E. Aeby-Gautier, B. Appolaire, S. Andrieu, and F. Soniak: Proc. 13th World Conf. on Titanium, V. Venkatesh, A.L. Pilchak, J.E. Allison, S. Ankem, R. Boyer, J. Christodoulou, H.L. Fraser, M.A. Imam, Y. Kosaka, H.J. Rack, A. Chatterjee, and A. Woodfield, eds., John Wiley & Sons Inc., Hoboken, NJ, 2016, pp. 547–52.Google Scholar
  17. 17.
    A. Radecka, P.A.J. Bagot, T.L. Martin, J. Coakley, V.A. Vorontsov, M.P. Moody, H. Ishii, D. Rugg, and D. Dye: Acta Mater., 2016, vol. 112, pp. 141–49.CrossRefGoogle Scholar
  18. 18.
    A. Fitzner, D.G.L. Prakash, J.Q. da Fonseca, M. Thomas, S.-Y. Zhang, J. Kelleher, P. Manuel, and M. Preuss: Acta Mater., 2016, vol. 103, pp. 341–51.CrossRefGoogle Scholar
  19. 19.
    S. Hémery and P. Villechaise: Scripta Mater., 2017, vol. 130, pp. 157–60.CrossRefGoogle Scholar
  20. 20.
    S. Hémery, A. Nait-Ali, and P. Villechaise: Mech. Mater., 2017, vol. 109, pp. 1–10.CrossRefGoogle Scholar
  21. 21.
    W.B. Hutchinson and M.R. Barnett: Scripta Mater., 2010, vol. 63, pp. 737–40.CrossRefGoogle Scholar
  22. 22.
    C. Zhou, S. Biner, and R. LeSar: Scripta Mater., 2010, vol. 63, pp. 1096–99.CrossRefGoogle Scholar
  23. 23.
    Y. Cui, Z. Liu, and Z. Zhuang: J. Mech. Phys. Solids, 2015, vol. 76, pp. 127–43.CrossRefGoogle Scholar
  24. 24.
    J. Kreith, T. Strunz, E.J. Fantner, G.E. Fantner, and M.J. Cordill: Rev. Sci. Instrum., 2017, vol. 88, p. 053704.  https://doi.org/10.1063/1.4983317.CrossRefGoogle Scholar
  25. 25.
    C. Motz, T. Schöberl, and R. Pippan: Acta Mater., 2005, vol. 53, pp. 4269–79.CrossRefGoogle Scholar
  26. 26.
    C. Motz, D. Weygand, J. Senger, and P. Gumbsch: Acta Mater., 2008, vol. 56, pp. 1942–55.CrossRefGoogle Scholar
  27. 27.
    J. Gong and A.J. Wilkinson: Acta Mater., 2011, vol. 59, pp. 5970–81.CrossRefGoogle Scholar
  28. 28.
    T. Neeraj, M.F. Savage, J. Tatalovich, L. Kovarik, R.W. Hayes, and M.J. Mills: Philos. Mag., 2005, vol. 85, pp. 279–95.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, UPR CNRS 3346, Physics and Mechanics of Materials Department, ENSMA – Téléport 2Chasseneuil CedexFrance

Personalised recommendations