Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 7, pp 2951–2962 | Cite as

Investigation of Ta-MX/Z-Phase and Laves Phase as Precipitation Hardening Particles in a 12 Pct Cr Heat-Resistant Steel

  • J. P. Sanhueza
  • D. RojasEmail author
  • O. Prat
  • J. García
  • M. F. Meléndrez
  • S. Suarez
Article
  • 202 Downloads

Abstract

A 12 pct Cr martensitic/ferritic steel was designed and produced to study Laves and Z-phase as precipitation hardening particles under creep conditions (650 °C). According to thermodynamic calculations, W and Cu additions were selected to ensure the precipitation of Laves after tempering. It is known that Z-phase formation does not follow the classical nucleation theory. Indeed, MX particles are transformed into Z-phase by Cr diffusion from the matrix to the precipitate. Therefore, to promote fast Z-phase formation, Ta, Co, and N additions were used to produce Ta-MX, which will be transformed into Z-phase. The main result achieved was the precipitation of Laves after tempering, with a particle size of 196 nm. As regards to Z-phase, the transformation of Ta-MX into Z-phase after tempering was confirmed by the formation of hybrid nanoparticles of 30 nm. Although W and Ta have a low diffusion in the martensitic/ferritic matrix, characterization of the precipitates after isothermal aging revealed that Laves and Z-phase have fast growth kinetics, reaching 400 and 143 nm, respectively, at 8760 hours. Consequently, creep test at 650 °C showed premature failures after few thousand hours. Therefore, it is expected that future research in the field of martensitic/ferritic steels will focus on the growth and coarsening behavior of Laves and Z-phase.

Notes

Acknowledgments

The authors would like to thank in particular: “DOCTORADO NACIONAL 21130630” for Doctoral Research Fellowship. Also, “FONDECYT de Iniciación 11110098” Project, “FONDECYT de Iniciación 11121384” Project, “Proyecto de inserción de capital humano avanzado 79112035” and “FONDECYT 1150457” Projects from the Chilean Government, for the financial support of this work. The authors are grateful for the support of the Create-Net Project (H2020-MSCA-RISE/644013) for research stays.

References

  1. 1.
    Kipelova, A. Belyakov, R. Kaibyshev: Mater. Sci. Eng. A, 2012, vol. 532, pp. 71– 77.CrossRefGoogle Scholar
  2. 2.
    K. Rodak, A. Hernas, A. Kiełbus: Mater. Chem. Phys., 2003, vol. 81, pp. 483–485.CrossRefGoogle Scholar
  3. 3.
    D. Rojas, J. Garcia, O. Prat, G. Sauthoff, A.R. Kaysser-Pyzalla: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5164-5176.CrossRefGoogle Scholar
  4. 4.
    J. Hald: Int. J. Pres. Ves. Pip., 2008, vol. 85, pp. 30-37.CrossRefGoogle Scholar
  5. 5.
    A. Aghajani, C. Somsen, G. Eggeler: Acta Mater., 2009, vol. 57, pp. 5093-5106.CrossRefGoogle Scholar
  6. 6.
    B.S. SrinivasPrasad, V.B. Rajkumar, K.C. HariKumar: CALPHAD, 2012, vol. 36, pp. 1–7.CrossRefGoogle Scholar
  7. 7.
    I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, R. Kaibyshev: Mater. Sci. Eng. A, 2014, vol. 615, pp. 153–163.CrossRefGoogle Scholar
  8. 8.
    F. Danoix, R. Danoix, J.Akr, A. Grellier, D. Delagnes: J. Microsc., 2011, Vol. 244, pp. 305-310.CrossRefGoogle Scholar
  9. 9.
    K. Maruyama, K. Sawada, J. Koike: ISIJ International, 2001, Vol. 41, pp. 641-653.CrossRefGoogle Scholar
  10. 10.
    L. Cipolla, H. K. Danielsen, D. Venditti, P. E. Di Nunzio, J. Hald, M. A. J. Somers: Acta Mater., 2010, vol. 58, pp. 669–679.CrossRefGoogle Scholar
  11. 11.
    H. K. Danielsen, J. Hald: Mater. Sci. Eng. A, 2009, vol. 505, pp. 169–177.CrossRefGoogle Scholar
  12. 12.
    F. Abe, M. Taneike, K. Sawada: Int. J. Pres. Ves. Pip., 2007, vol. 84, pp. 3–12.CrossRefGoogle Scholar
  13. 13.
    U. E. Klotz, C. Solenthaler, P. J. Uggowitzer: Mater. Sci. Eng. A, 2008, vol. 476, pp. 186–194.CrossRefGoogle Scholar
  14. 14.
    D. Rojas, J. Garcia, O. Prat, C. Carrasco, G. Sauthoff, A.R. Kaysser-Pyzalla:Mater. Sci. Eng. A, 2010, vol. 527, pp. 3864–3876.CrossRefGoogle Scholar
  15. 15.
    M. Staubli, K.-H. Mayer, T.-U. Kern, R.W. Vanstone, R. Hanus, J. Stief, and K.-H. Schönfeld: in Proc. COST 522Power Gener. into the 21st Century, R. Viswanathan, W.T. Bakker, and J.D. Parker, eds., Advanced Steam Power Plant, University of Wales and EPRI, 2001, pp. 15–32.Google Scholar
  16. 16.
    N. Tanaka, R. Wicks, Power generation from coal, Measuring and reporting efficiency performance and CO2 emissions; International Energy Agency, Paris, France, 2010.Google Scholar
  17. 17.
    D. Schmidt,M.C. Galetz, M. Schütze: Surf. Coat. Tech., 2013, vol. 237, pp. 23-29.CrossRefGoogle Scholar
  18. 18.
    H. K. Danielsen, P. E. DiNunzio, J. Hald: Metall. Mater. Trans.A, 2013, vol. 44, pp. 2445-2452CrossRefGoogle Scholar
  19. 19.
    M. Taneike, F. Abe, K. Sawada: Nature, 2003, vol. 424, pp. 294-296.CrossRefGoogle Scholar
  20. 20.
    H. K. Danielsen, J. Hald: CALPHAD, 2007, vol. 31, pp. 505–514.CrossRefGoogle Scholar
  21. 21.
    R. Agamennone, W. Blum, C. Gupta, J.K. Chakravartty: Acta Mater., 2009, vol. 54, pp. 3003-3014.CrossRefGoogle Scholar
  22. 22.
    O. Prat, J. Garcia, D. Rojas, C. Carrasco, A.R. Kaysser-Pyzalla: Mater. Sci. Eng. A, 2010, vol.527, pp. 5976–5983.CrossRefGoogle Scholar
  23. 23.
    F. Liu, M. Rashidi, L. Johansson, J. Hald, H. O. Andrén: Scr. Mater., 2016, vol. 113, pp. 93–96.CrossRefGoogle Scholar
  24. 24.
    T. Sakthivel, M. Vasudevan, K. Lahan, P. Parameswaran, K.S. Chandravathi, S. PanneerSelvi, V. Maduraimuthu, M.D. Mathew: Mater. Sci. Eng. A, 2014, vol. 591, pp. 111–120.CrossRefGoogle Scholar
  25. 25.
    M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H. G. Armaki, K. Maruyama: Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 162–168.CrossRefGoogle Scholar
  26. 26.
    H. K. Danielsen, J. Hald, Flemming B. Grumsen, Marcel A.J. Somers: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2633-2640.CrossRefGoogle Scholar
  27. 27.
    H. K. Danielsen, J. Hald: Scr. Mater., 2009, vol. 60, pp. 811–813.CrossRefGoogle Scholar
  28. 28.
    H. K. Danielsen, J. Hald, M. A.J. Somers: Scr. Mater., 2012, vol. 66, pp. 261–264.CrossRefGoogle Scholar
  29. 29.
    O. Prat, J. Garcia, D. Rojas, C. Carrasco, G. Inden: Acta Mater., 2010, vol.58,pp. 6142–6153.CrossRefGoogle Scholar
  30. 30.
    TCFE8—TCS Steels/Fe-Alloys Database, Version 8.0. http://www.thermocalc.com/products-services/databases/thermodynamic/. Accessed 21 Sep 2016.
  31. 31.
    D.R.G. Mitchell, S. Sulaiman: Mater.Charact., 2006, vol. 56, pp. 49–58.CrossRefGoogle Scholar
  32. 32.
    P .Hofer, H. Cerjak, P. Warbichler: Mater. Sci Technol., 2000, vol. 16, pp. 1221– 1225.CrossRefGoogle Scholar
  33. 33.
    P.J. Goodhew, F.J. Humphreys, Electron Microscopy and Analysis, Taylor and Francis, London, 1988, pp. 39-61.Google Scholar
  34. 34.
    K.W. Andrews, D.J. Dyson, S.R. Keown, “Interpretation of Electron Diffraction Patterns”, Adam Hilger Ltd, London, 1971, pp. 71-125.Google Scholar
  35. 35.
    P. Ettmayer: Monatsh. Chem., 1971, vol. 102, pp. 858–863.CrossRefGoogle Scholar
  36. 36.
    H. K. Danielsen, J. Hald: Energy Mater., 2006, vol.1, pp. 49–57.CrossRefGoogle Scholar
  37. 37.
    M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe and G. Eggeler: ActaMater., 2015, vol. 90, pp. 94–104.CrossRefGoogle Scholar
  38. 38.
    M.I. Isik, A. Kostka, G. Eggeler: Acta Mater., 2014, vol.81,pp. 230–240.CrossRefGoogle Scholar
  39. 39.
    O. Prat, J. García, D. Rojas, J.P. Sanhueza, C. Camurri: Mater. Chem. Phys., 2014, vol. 143, pp. 754-764.CrossRefGoogle Scholar
  40. 40.
    B. S. Ku and J. Yu: Scr. Mater., 2001, vol. 45, pp. 205-211.CrossRefGoogle Scholar
  41. 41.
    L. Helis, Y. Toda, T. Hara, H. Miyazaki, and F. Abe: Proc. 34th MPA Semin., Stuttgart, Germany, 2008, MPA Stuttgart, Paper 9.Google Scholar
  42. 42.
    H. K. Danielsen: Mater. Sci. Tech., 2016, vol. 32, pp. 126-137.CrossRefGoogle Scholar
  43. 43.
    W. Yan, W. Wang, Y. Shan, V. Yang, and W. Sha: 9–12% Cr Heat Resistant Steels, Illustrated edition, Springer, Cham, 2015, p. 152.Google Scholar
  44. 44.
    M. Tamura, H. Kusuyama, K. Shinozuka, H. Esaka: J. Nucl. Mater., 2007, vol. 367–370, pp. 137–141.CrossRefGoogle Scholar
  45. 45.
    M. Tamura, K. Shinozuka, K. Masamura, K. Ishizawa, S. Sugimoto: J. Nucl. Mater., 1998, vol. 258-263, pp. 1158-1162.CrossRefGoogle Scholar
  46. 46.
    M. Tamura , H. Sakasegawa, A. Kohyama, H. Esaka, K. Shinozuka: J. Nucl. Mater., 2004,vol. 329–333, pp. 328–332.CrossRefGoogle Scholar
  47. 47.
    M. Gao, S. T. Bradley, Y. Cao, D. Jena, Y. Lin, S. A. Ringel, J. Hwang, W. J. Schaff, L. J. Brillson: J. Appl. Phys., 2006, vol. 100, pp. 1-12.CrossRefGoogle Scholar
  48. 48.
    J.P. Sanhueza, D. Rojas, O. Prat, J. Garcia, R. Espinoza, C. Montalba, M.F. Melendrez: Mater. Chem. Phys., 2017, Vol. 200, pp. 342-353.CrossRefGoogle Scholar
  49. 49.
    M. Rashidi: Development of a new generation of creep resistant 12% chromium steels: Microstructure of Z-phase strengthened steels, Chalmers University of Technology, Gothenburg, Sweden, 2017, pp. 48-51.Google Scholar
  50. 50.
    M. Rashidi, H. O. Andrén, F. Liu: Microsc. Microanal., 2017, Vol. 23, pp. 360-365.CrossRefGoogle Scholar
  51. 51.
    H.K. Danielsen, S. Kadkhodazadeh, F.B. Grumsen, M.A.J. Somers: Philos. Mag., 2014, vol. 94, pp. 2339–2349.CrossRefGoogle Scholar
  52. 52.
    M. Y.Kima, S. M. Hong, K. H. Lee, W. S. Jung, Y. S. Lee, Y. K. Lee, J. H. Shim: Mater.Charact., 2017, vol. 129, pp. 40–45.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • J. P. Sanhueza
    • 1
  • D. Rojas
    • 1
    Email author
  • O. Prat
    • 1
  • J. García
    • 2
  • M. F. Meléndrez
    • 1
  • S. Suarez
    • 3
  1. 1.Departamento de Ingeniería de MaterialesUniversidad de ConcepciónConcepciónChile
  2. 2.AB Sandvik Coromant R&DStockholmSweden
  3. 3.Department of Materials ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations