Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 1992–1997 | Cite as

Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

  • A. Motallebzadeh
  • M. B. Yagci
  • E. Bedir
  • C. B. Aksoy
  • D. Canadinc
Communication

Abstract

TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

Notes

The authors gratefully acknowledger the financial support from the Technical Research Council of Turkey (TUBİTAK) under the Grant Number: 117M826.

References

  1. 1.
    S. Shabalovskaya, J. Anderegg, and J. Van Humbeeck: Acta Biomater., 2008, vol. 4, pp. 447–67.CrossRefGoogle Scholar
  2. 2.
    He Tian, Dominique Schryvers, Di Liu, Qing Jiang, and Jan Van Humbeeck: Acta Biomater., 2011, vol. 7, pp. 892–99.CrossRefGoogle Scholar
  3. 3.
    Hairui Wang, Fu Liu, Xinbo Xiong, Shanming Ke, Xierong Zeng, and Peng Lin: Appl. Surf. Sci., 2015, vol. 356, pp. 1234–43.CrossRefGoogle Scholar
  4. 4.
    Y. P. Zhang, D. S. Li, and X. P. Zhang: Scr. Mater., 2007, vol. 57, pp. 1020–23.CrossRefGoogle Scholar
  5. 5.
    S. M. Toker and D. Canadinc: Mater. Sci. Eng. C. Mater. Biol. Appl., 2014, vol. 40, pp. 142–47.CrossRefGoogle Scholar
  6. 6.
    C. L. Chu, T. Hu, S. L. Wu, Y. S. Dong, L. H. Yin, Y. P. Pu, P. H. Lin, C. Y. Chung, K. W K Yeung, and Paul K. Chu: Acta Biomater., 2007, vol. 3, pp. 795–806.CrossRefGoogle Scholar
  7. 7.
    F. T. Cheng, P. Shi, and H. C. Man: Scr. Mater., 2004, vol. 51, pp. 1041–45.CrossRefGoogle Scholar
  8. 8.
    H. R. Wang, F. Liu, Y. P. Zhang, D. Z. Yu, and F. P. Wang: Appl. Surf. Sci., 2011, vol. 257, pp. 5576–80.CrossRefGoogle Scholar
  9. 9.
    Mohammad H. Elahinia, Mahdi Hashemi, Majid Tabesh, and Sarit B. Bhaduri: Prog. Mater. Sci., 2012, vol. 57, pp. 911–46.CrossRefGoogle Scholar
  10. 10.
    R. M. Wang, C. L. Chu, T. Hu, Y. S. Dong, C. Guo, X. B. Sheng, P. H. Lin, C. Y. Chung, and P. K. Chu: Appl. Surf. Sci., 2007, vol. 253, pp. 8507–12.CrossRefGoogle Scholar
  11. 11.
    L. Bait, L. Azzouz, N. Madaoui, and N. Saoula: Appl. Surf. Sci., 2017, vol. 395, pp. 72–77.CrossRefGoogle Scholar
  12. 12.
    M. H. Wong, F. T. Cheng, and H. C. Man: Scr. Mater., 2007, vol. 61, pp. 3391–94.Google Scholar
  13. 13.
    D. P. Aun, M. Houmard, M. Mermoux, L. Latu-Romain, J. C. Joud, G. Berthomé, V. T. L. Buono: Appl. Surf. Sci., 2016, vol. 375, pp. 42–49.CrossRefGoogle Scholar
  14. 14.
    S. M. Toker, D. Canadinc, H. J. Maier, and O. Birer: Mater. Sci. Eng. C, 2014, vol. 36, pp. 118–29.CrossRefGoogle Scholar
  15. 15.
    Lijun Zhang, Pengfei Yu, Hu Cheng, Huan Zhang, Haoyan Diao, Yunzhu Shi, Bilin Chen, Peiyong Chen, Rui Feng, Jie Bai, Qin Jing, Mingzhen Ma, P. K. Liaw, Gong Li, and Riping Liu: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, vol. 47, pp. 5871–75.Google Scholar
  16. 16.
    V Braic, M Balaceanu, M Braic, A Vladescu, S Panseri, and A Russo: J. Mech. Behav. Biomed. Mater., 2012, vol. 10, pp. 197–205.CrossRefGoogle Scholar
  17. 17.
    Yong Liu, Shengguo Ma, Michael C. Gao, Chuan Zhang, Teng Zhang, Huijun Yang, Zhihua Wang, and Junwei Qiao: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3312–21.CrossRefGoogle Scholar
  18. 18.
    M J Yao, K G Pradeep, C C Tasan, and D Raabe: Scr. Mater., 2014, vol. 72–73, pp. 5–8.CrossRefGoogle Scholar
  19. 19.
    Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang: Scr. Mater., 2015, vol. 104, pp. 53–55.CrossRefGoogle Scholar
  20. 20.
    D B Miracle and O N Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.CrossRefGoogle Scholar
  21. 21.
    Mitsuharu Todai, Takeshi Nagase, Takao Hori, Aira Matsugaki, Aiko Sekita, and Takayoshi Nakano: Scr. Mater., 2017, vol. 129, pp. 65–68.CrossRefGoogle Scholar
  22. 22.
    Du-cheng Tsai, Zue-chin Chang, Li-yu Kuo, Tien-jen Lin, Tai-nan Lin, Ming-hua Shiao, and Fuh-sheng Shieu: Thin Solid Films, 2013, vol. 544, pp. 580–87.CrossRefGoogle Scholar
  23. 23.
    Ming-hsiao Hsieh, Ming-hung Tsai, Wan-jui Shen, and Jien-wei Yeh: Surf. Coat. Technol., 2013, vol. 221, pp. 118–23.CrossRefGoogle Scholar
  24. 24.
    Bo Ren, Zigang Shen, and Zhongxia Liu: J. Alloys Compd., 2013, vol. 560, pp. 171–76.CrossRefGoogle Scholar
  25. 25.
    V Dolique, A Thomann, P Brault, Y Tessier, and P Gillon: Surf. Coat. Technol., 2010, vol. 204, pp. 1989–92.CrossRefGoogle Scholar
  26. 26.
    C.H. Lin, J.G. Duh, and J.W. Yeh: Surf. Coatings Technol., 2007, vol. 201, pp. 6304–8.CrossRefGoogle Scholar
  27. 27.
    Chia-han Lai, Ming-hung Tsai, Su-jien Lin, and Jien-wei Yeh: Surf. Coat. Technol., 2007, vol. 201, pp. 6993–98.CrossRefGoogle Scholar
  28. 28.
    Chia-han Lai, Su-jien Lin, Jien-wei Yeh, and Shou-yi Chang: Surf. Coat. Technol., 2006, vol. 201, pp. 3275–80.CrossRefGoogle Scholar
  29. 29.
    Ping-kang Huang and Jien-wei Yeh: Scr. Mater., 2010, vol. 62, pp. 105–8.CrossRefGoogle Scholar
  30. 30.
    Daniel B Miracle, Jonathan D Miller, Oleg N Senkov, Christopher Woodward, Michael D Uchic, and Jaimie Tiley: Entropy, 2014, vol. 16, pp. 494–525.CrossRefGoogle Scholar
  31. 31.
    R Rodr, J A Benito, E S Puchi-cabrera, and M H Staia: Wear, 2007, vol. 262, pp. 380–89.CrossRefGoogle Scholar
  32. 32.
    B Ren, Z X Liu, L Shi, B Cai, and M X Wang: Appl. Surf. Sci., 2011, vol. 257, pp. 7172–78.CrossRefGoogle Scholar
  33. 33.
    S Guo: Mater. Sci. Technol., 2015, vol. 31, pp. 1223–30.CrossRefGoogle Scholar
  34. 34.
    Akihisa Inoue: Mater. Trans. JIM, 1995, vol. 36, pp. 866–75.CrossRefGoogle Scholar
  35. 35.
    L Liu, J B Zhu, C Hou, J C Li, and Q Jiang: Mater. Des., 2013, vol. 46, pp. 675–79.CrossRefGoogle Scholar
  36. 36.
    Ta-kun Chen, Ming-show Wong, Tao-tsung Shun, and Jien-wei Yeh: Surf. Coat. Technol., 2005, vol. 200, pp. 1361–65.CrossRefGoogle Scholar
  37. 37.
    Xiaochun Li, Zuoyun Zheng, Dan Dou, Jianchen Li, and Engineering Training Centre: Mater. Res., 2016, vol. 19, pp. 802–6.CrossRefGoogle Scholar
  38. 38.
    Terence M. Donovan and Klaus Heinemann: Phys. Rev. Lett., 1971, vol. 27, pp. 1794–96.CrossRefGoogle Scholar
  39. 39.
    S. Tsukimoto, M. Moriyama, and Masanori Murakami: Thin Solid Films, 2004, vol. 460, pp. 222–26.CrossRefGoogle Scholar
  40. 40.
    Chun-huei Tsau, Zhang-yan Hwang, and Swe-kai Chen: Adv. Mater. Sci. Eng., 2015, vol. 2015, pp. 1–7.CrossRefGoogle Scholar
  41. 41.
    M. Târcolea V. Soare, M. Burada, I. Constantin,∗, D. Mitrică, V. Bădilită, A. Caragea: Appl. Surf. Sci., 2015, vol. 358, pp. 533–39.CrossRefGoogle Scholar
  42. 42.
    C H Lin, J G Duh, and J W Yeh: Surf. Coat. Technol., 2007, vol. 201, pp. 6304–8.CrossRefGoogle Scholar
  43. 43.
    Donald M. Mattox: Handbook of Physical Vapor Deposition (PVD) Processing, Second Edi, Elsevier Inc, Oxford, 2010.Google Scholar
  44. 44.
    B Uzer, S M Toker, A Cingoz, T Bagci-onder, G Gerstein, and H J Maier: J. Mech. Behav. Biomed. Mater., 2016, vol. 60, pp. 177–86.CrossRefGoogle Scholar
  45. 45.
    Tao Sun, Lang Ping Wang, Min Wang, Ho Wang Tong, and William W. Lu: Thin Solid Films, 2011, vol. 519, pp. 4623–28.CrossRefGoogle Scholar
  46. 46.
    Zhinan An, Haoling Jia, Yueying Wu, Philip D Rack, Allan D Patchen, Yuzi Liu, Yang Ren, Nan Li, Peter K Liaw, Zhinan An, Haoling Jia, Yueying Wu, Philip D Rack, and Allan D Patchen: Mater. Res. Lett., 2015, vol. 3, pp. 203–9.CrossRefGoogle Scholar
  47. 47.
    Du-cheng Tsai, Zue-chin Chang, Bing-hau Kuo, Tai-nan Lin, Ming-hua Shiao, and Fuh-sheng Shieu: Surf. Coat. Technol., 2014, vol. 240, pp. 160–66.CrossRefGoogle Scholar
  48. 48.
    J. Veselý, J. Zýka, J. Málek, Z. Pala, and I. Andršová: İn Met. 2015, Brno, Czech Republic, 2015, pp. 3–8.Google Scholar
  49. 49.
    M.-H. Tsai, J.-W. Yeh: Mater. Res. Lett., 2016, vol. 3831.Google Scholar
  50. 50.
    B.S. Murty, J.W. Yeh, and S. Ranganathan: High-Entropy Alloys, Elsevier, Amsterdam, 2014.Google Scholar
  51. 51.
    O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, and C. F. Woodward: J. Alloys Compd., 2011, vol. 509, pp. 6043–48.CrossRefGoogle Scholar
  52. 52.
    Natalya Larianovsky, Alexander Katz-Demyanetz, Eyal Eshed, and Michael Regev: Materials (Basel)., 2017, vol. 10, pp. 1–12.CrossRefGoogle Scholar
  53. 53.
    Shou-yi Chang, Shao-yi Lin, Yi-chung Huang, and Chia-liang Wu: Surf. Coat. Technol., 2010, vol. 204, pp. 3307–14.CrossRefGoogle Scholar
  54. 54.
    H.R. Ma, X.Y. Chen, J.W. Li, C.T. Chang, G. Wang, H. Li, X.M. Wang, and R.W. Li: Surf. Eng., 2017, vol. 33, pp. 56–62.CrossRefGoogle Scholar
  55. 55.
    Adélia Moreira, Ronaldo Junio, Campos Batista, Leo Anderson, Meira Martins, Mariana Ilha, Moema Queiroz, Douglas Rodrigues, Fátima Costa, Rodrigues Guma, Iduvirges Lourdes, and Taíse Matte: Corros. Sci., 2014, vol. 82, pp. 297–303.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • A. Motallebzadeh
    • 1
    • 2
  • M. B. Yagci
    • 2
  • E. Bedir
    • 1
  • C. B. Aksoy
    • 1
  • D. Canadinc
    • 1
    • 2
  1. 1.Advanced Materials Group (AMG), Department of Mechanical EngineeringKoc UniversityIstanbulTurkey
  2. 2.Surface Science and Technology Center (KUYTAM)Koc UniversityIstanbulTurkey

Personalised recommendations