Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2193–2201 | Cite as

Prediction of Cavitation Depth in an Al-Cu Alloy Melt with Bubble Characteristics Based on Synchrotron X-ray Radiography

  • Haijun Huang
  • Da Shu
  • Yanan Fu
  • Guoliang Zhu
  • Donghong Wang
  • Anping Dong
  • Baode Sun
Article
  • 249 Downloads

Abstract

The size of cavitation region is a key parameter to estimate the metallurgical effect of ultrasonic melt treatment (UST) on preferential structure refinement. We present a simple numerical model to predict the characteristic length of the cavitation region, termed cavitation depth, in a metal melt. The model is based on wave propagation with acoustic attenuation caused by cavitation bubbles which are dependent on bubble characteristics and ultrasonic intensity. In situ synchrotron X-ray imaging of cavitation bubbles has been made to quantitatively measure the size of cavitation region and volume fraction and size distribution of cavitation bubbles in an Al-Cu melt. The results show that cavitation bubbles maintain a log-normal size distribution, and the volume fraction of cavitation bubbles obeys a tanh function with the applied ultrasonic intensity. Using the experimental values of bubble characteristics as input, the predicted cavitation depth agrees well with observations except for a slight deviation at higher acoustic intensities. Further analysis shows that the increase of bubble volume and bubble size both leads to higher attenuation by cavitation bubbles, and hence, smaller cavitation depth. The current model offers a guideline to implement UST, especially for structural refinement.

Nomenclature

A

Vibration amplitude of the sonotrode

S

Area of cavitation region

C0, C1st, C2nd

Fitting constants

Re

Identifier of real number

Im

Identifier of imaginary number

Φ

Complex dimensionless parameter

ρ

Liquid density, 3340 kg/m3

kmix

Complex wave vector

α

attenuation coefficient

αth

Local attenuation corresponding to local intensity Ith

ω

Wave frequency (ω = 2πf)

ω0

Resonance frequency (Hz)

c

Sound speed in liquid at ambient pressure (m/s)

c0

Constant sound speed (m/s), 4600 m/s

cmix

Complex wave velocity

R

Equilibrium radius of bubbles (m)

f

Ultrasound frequency (Hz), 20 kHz

f(r, R)

Number distribution of cavitation bubbles with equilibrium radius R at distance r

fN(r)

Normalized form of f(r, R)

Nb

Total number of cavitation bubbles

β(r)

Volume fraction of cavitation bubbles at distance r

I

Acoustic intensity

I0

Applied acoustic intensity at the radiation face of ultrasonic horn

Ith

Intensity threshold of cavitation, 1.2 MW/m2

pun

Undisturbed pressure at bubble location (Pa), 105 Pa

pa

Pressure amplitude (Pa)

p0

Pressure input (Pa)

σs

Surface tension, 0.87 N/m

Φ

Complex dimensionless parameter

χ

Dimensionless parameter

γ

Specific heat ratio of gas inside bubbles, 1.4 for air bubble in water[39]

D

Thermal diffusivity of gas inside bubbles, 8.418 × 10−5 m2/s

b

Damping factor (1/s)

μ

Liquid viscosity (Pa s), 1 MPa s for aluminum melt at 700 °C[8]

Notes

Acknowledgments

The authors would like to thank the financial support from the National Key R&D Program of China (No. 2016YFB0701405), the National Science Foundation of China (Nos. 51627802, 51704196, 51771118, and 51704195), the National Science Foundation of China and Steel Joint Project (No. U1760110), and Shanghai Science and Technology Committee (No. 16DZ2260602).

References

  1. 1.
    F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay and M. Mounib: Acta Mater., 2016, vol. 116, pp. 354-363.CrossRefGoogle Scholar
  2. 2.
    G. I. Eskin: Ultrason. Sonochem., 2001, vol. 8(3), pp. 319-325.CrossRefGoogle Scholar
  3. 3.
    L. Zhang, D. G. Eskin and L. Katgerman: J. Mater. Sci., 2011, vol. 46(15), pp. 5252-5259.CrossRefGoogle Scholar
  4. 4.
    W. Zhai, Z. Y. Hong, X. L. Wen, D. L. Geng and B. Wei: Mater. Design, 2015, vol. 72, pp. 43-50.CrossRefGoogle Scholar
  5. 5.
    C. Ruirun, Z. Deshuang, M. Tengfei, D. Hongsheng, S. Yanqing, G. Jingjie and F. Hengzhi: Sci. Rep., 2017, vol. 7, pp. 1-15.CrossRefGoogle Scholar
  6. 6.
    X. Liu, Z. Zhang, W. Hu, Q. Le, L. Bao, J. Cui and J. Jiang: Ultrason. Sonochem., 2015, vol. 26, pp. 73-80.CrossRefGoogle Scholar
  7. 7.
    J. Yan, Z. Xu, L. Shi, X. Ma and S. Yang: Mater. Design, 2011, vol. 32(1), pp. 343-347.CrossRefGoogle Scholar
  8. 8.
    G. I. Eskin and D. G. Eskin: Ultrasonic Treatment of Light Alloy Melts. 2nd ed. CRC Press, London, 2014, pp. 17-74.Google Scholar
  9. 9.
    T. V. Atamanenko, D. G. Eskin, L. Zhang and L. Katgerman: Metall. Mater. Trans. A, 2010, vol. 41(8), pp. 2056-2066.CrossRefGoogle Scholar
  10. 10.
    F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard and T. Connolley: Acta Mater., 2017, vol. 141, pp. 142-153.CrossRefGoogle Scholar
  11. 11.
    A. Ramirez, M. Qian, B. Davis, T. Wilks and D. H. StJohn: Scripta Mater., 2008, vol. 59(1), pp. 19-22.CrossRefGoogle Scholar
  12. 12.
    R. Chow, R. Blindt, R. Chivers and M. Povey: Ultrasonics, 2005, vol. 43(4), pp. 227-230.CrossRefGoogle Scholar
  13. 13.
    D. Shu, B. Sun, J. Mi and P. S. Grant: Metall. Mater. Trans. A, 2012, vol. 43(10), pp. 3755-3766.CrossRefGoogle Scholar
  14. 14.
    S. Labouret and J. Frohly: Eur. Phys. 2002, vol. 19(1), pp. 39-54.Google Scholar
  15. 15.
    A. Brotchie, F. Grieser and M. Ashokkumar: Phys. Rev. Lett., 2009, vol. 102(8), pp. 4302-4305.CrossRefGoogle Scholar
  16. 16.
    F. Burdin, N. A. Tsochatzidis, P. Guiraud, A. M. Wilhelm and H. Delmas: Ultrason. Sonochem., 1999, vol. 6(1-2), pp. 43-51.CrossRefGoogle Scholar
  17. 17.
    N. A. Tsochatzidis, P. Guiraud, A. M. Wilhelm and H. Delmas: Chem. Eng. Sci., 2001, vol. 56(5), pp. 1831-1840.CrossRefGoogle Scholar
  18. 18.
    T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki and M. Yoshida: Compos. Part A, 2007, vol. 38(3), pp. 771-778.CrossRefGoogle Scholar
  19. 19.
    S. Komarov, K. Oda, Y. Ishiwata and N. Dezhkunov: Ultrason. Sonochem., 2013, vol. 20(2), pp. 754-761.CrossRefGoogle Scholar
  20. 20.
    I. Tzanakis, G. S. B. Lebon, D. G. Eskin and K. A. Pericleous: J. Mater. Process. Technol., 2016, vol. 229, pp. 582-586.CrossRefGoogle Scholar
  21. 21.
    I. Tzanakis, G. S. Lebon, D. G. Eskin and K. A. Pericleous: Ultrason. Sonochem., 2017, vol. 34, pp. 651-662.CrossRefGoogle Scholar
  22. 22.
    T. L. Lee, J. C. Khong, K. Fezzaa and J. W. Mi: Mater. Sci. Forum, 2013, vol. 765, pp. 190-194.CrossRefGoogle Scholar
  23. 23.
    H. Huang, D. Shu, Y. Fu, J. Wang and B. Sun: Ultrason. Sonochem., 2014, vol. 21(4), pp. 1275-1278.CrossRefGoogle Scholar
  24. 24.
    W. W. Xu, I. Tzanakis, P. Srirangam, W. U. Mirihanage, D. G. Eskin, A. J. Bodey and P. D. Lee: Ultrason. Sonochem., 2016, vol. 31, pp. 355-361.CrossRefGoogle Scholar
  25. 25.
    L. V. Wijngaarden: J. Fluid Mech., 1968, vol. 33(33), pp. 465-474.CrossRefGoogle Scholar
  26. 26.
    R. E. Caflisch, M. J. Miksis, G. C. Papanicolaou and L. Ting: J. Fluid Mech., 1985, vol. 153, pp. 259-273.CrossRefGoogle Scholar
  27. 27.
    K. W. Commander and A. Prosperetti: J. Acoust. Soc. Am., 1989, vol. 85(2), pp. 732-746.CrossRefGoogle Scholar
  28. 28.
    H. J. Kim, M. H. Chi and I. K. Hong: Journal of Industrial & Engineering Chemistry, 2009, vol. 15(6), pp. 919-928.CrossRefGoogle Scholar
  29. 29.
    L. Nastac: Metall. Mater. Trans. B, 2011, vol. 42(6), pp. 1297-1305.CrossRefGoogle Scholar
  30. 30.
    G. Servant, J. L. Laborde, A. Hita, J. P. Caltagirone and A. Gérard: Ultrason. Sonochem., 2003, vol. 10(6), pp. 347-355.CrossRefGoogle Scholar
  31. 31.
    I. Tudela, V. Saez, M. D. Esclapez, M. I. Diez-Garcia, P. Bonete and J. Gonzalez-Garcia: Ultrason. Sonochem., 2014, vol. 21(3), pp. 909-919.CrossRefGoogle Scholar
  32. 32.
    G. S. B. Lebon, I. Tzanakis, K. Pericleous and D. Eskin: Ultrason. Sonochem., 2018, vol. 42, pp. 411-421.CrossRefGoogle Scholar
  33. 33.
    L. G. S. Bruno, I. Tzanakis, G. Djambazov, K. Pericleous and D. G. Eskin: Ultrason. Sonochem., 2017, vol. 37, pp. 660-668.CrossRefGoogle Scholar
  34. 34.
    H. Huang, D. Shu, J. Zeng, F. Bian, Y. Fu, J. Wang and B. Sun: Scripta Mater., 2015, vol. 106, pp. 21-25.CrossRefGoogle Scholar
  35. 35.
    M. Qian, A. Ramirez and A. Das: J. Cryst. Growth, 2009, vol. 311(14), pp. 3708-3715.CrossRefGoogle Scholar
  36. 36.
    R. Jamshidi, B. Pohl, U. A. Peuker and G. Brenner: Chem. Eng. J., 2012, vol. 189, pp. 364-75.CrossRefGoogle Scholar
  37. 37.
    Z. Xu, K. Yasuda and S. Koda: Ultrason. Sonochem., 2013, vol. 20(1), pp. 452-459.CrossRefGoogle Scholar
  38. 38.
    M. M. van Iersel, N. E. Benes and J. T. F. Keurentjes: Ultrason. Sonochem., 2008, vol. 15(4), pp. 294-300.CrossRefGoogle Scholar
  39. 39.
    C. D. Jr: J. Acoust. Soc. Am., 1959, vol. 31(12), pp. 1654-1667.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Materials Genome Initiative CenterShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Shanghai Synchrotron Radiation FacilityShanghai Institute of Applied Physics, CASShanghaiChina
  4. 4.Shanghai Innovation Institute for MaterialsShanghaiChina

Personalised recommendations