Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2293–2301 | Cite as

Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

  • Yasuhiro YogoEmail author
  • Nozomi Kurato
  • Noritoshi Iwata


When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.


  1. 1.
    H. Karbasian, A.E. Tekkaya, J. Mater. Process. Technol., (2010), 210, pp. 2103 - 2118CrossRefGoogle Scholar
  2. 2.
    M. Merklein, J. Lechler, J. Mater. Process. Technol., (2006), 177, pp. 452 - 455.CrossRefGoogle Scholar
  3. 3.
    Y. Yogo, M. Kamiyama, T. Iwata, N. Iwata, T. Ishikawa, Metall. Mater. Trans. A, (2012), 43A, pp. 893 – 899CrossRefGoogle Scholar
  4. 4.
    P.F. Bariani, S. Bruschi, A. Ghiotti, A. Turetta, CIRP Ann. Manuf. Technol., (2008), 57, pp. 265 – 268CrossRefGoogle Scholar
  5. 5.
    J.Y. Min, J.P. Lin, J.Y. Li, W.H. Bao, Comput. Mater. Sci., (2010), 49, pp. 326 - 332CrossRefGoogle Scholar
  6. 6.
    Cui Junjia, Sun Guangyong, Xu Junrui, Huang Xiaodong Li Guangyao, Mater Des, (2015) 77, pp. 95-109CrossRefGoogle Scholar
  7. 7.
    R. Kolleck, R. Veit, M. Merklein, J. Lechler, M. Geiger, CIRP Ann. Manuf. Technol., (2009), 58, pp. 275 - 278CrossRefGoogle Scholar
  8. 8.
    M. Naderi, A. Saeed-Akbari, W. Bleck, Mater. Sci. Eng. A: Struct. 487 (2008) 445–455.CrossRefGoogle Scholar
  9. 9.
    A. Barcellona, D. Palmeri, Metall. Mater. Trans. A, (2009), 40A, pp. 1160 - 1174.CrossRefGoogle Scholar
  10. 10.
    M. Nikravesh, M. Naderi, G.H. Akbari, W. Bleck, Mater. Des., (2015), 84, pp. 18 – 24CrossRefGoogle Scholar
  11. 11.
    Z. Shi, K. Liu, M. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y. Zhang, L. Jian, Mater. Sci. Eng. A (2012), 535, pp. 290–96.CrossRefGoogle Scholar
  12. 12.
    N. Li, J. Lin, D.S. Balint, T.A. Dean, J. Mater. Process. Technol., (2016) 231, pp. 254-264CrossRefGoogle Scholar
  13. 13.
    Bernd M. Linke, Thomas Gerber, Ansgar Hatscher, Ilaria Salvatori, Iñigo Aranguren, Maribel Arribas, Metall. Mater. Trans. A, (2018) 49, pp. 54–65CrossRefGoogle Scholar
  14. 14.
    A. Bardelcik, C.S. Salisbury, S. Winkler, M.A. Wells, M.J. Worswick, Int. J. Impact Eng., (2010), 37, pp. 694 - 702.CrossRefGoogle Scholar
  15. 15.
    Marion Merklein, Michael Wieland, Michael Lechner, Stefania Bruschi, Andrea Ghiotti, J. Mater. Process. Technol., (2016) 228, pp. 11-24CrossRefGoogle Scholar
  16. 16.
    Prasun Chokshi, Richard Dashwood, Darren J. Hughes, Comput Struct, (2017) 190, pp. 162-172CrossRefGoogle Scholar
  17. 17.
    Yanhong Mu, Baoyu Wang, Jing Zhou, Xu Huang, Xuetao Li, Metall. Mater. Trans. A, (2017) 48, pp. 5467–5479CrossRefGoogle Scholar
  18. 18.
    Shiqi Zhang, Yunhua Huang, Bintang Sun, Qingliang Liao, Hongzhou Lu, Bian Jian, Hardy Mohrbacher, Wei Zhang, Aimin Guo, Yue Zhang, Mater Sci Eng A, (2015) 626, pp. 136-143CrossRefGoogle Scholar
  19. 19.
    Hye-Jin Kim, Soon-Hyeok Jeon, Won-Seog Yang, Byung-Gil Yoo, Yoo-Dong Chung, Heon-Young Ha, Hyun-Young Chung, J Alloys Compd, (2018) 735, pp. 2067-2080CrossRefGoogle Scholar
  20. 20.
    H. Fujimoto, M. Yasuyama, H. Ueda. R. Ueji, and H. Fujii, Q. J. Jpn. Weld. Soc., 2015, vol. 33, pp. 144–52 (in Japanese).Google Scholar
  21. 21.
    H. Fujimoto, H. Ueda, E. Nakayama, R. Ueji and H. Fujii, Q. J. Jpn. Weld. Soc., (2015), 33, pp. 253-261 (in Japanese)CrossRefGoogle Scholar
  22. 22.
    Hiroki Fujimoto, Masanori Yasuyama, Hideki Ueda, Rintaro Ueji, Hidetoshi Fujii, Weld Int, (2017) 31, pp. 681-691CrossRefGoogle Scholar
  23. 23.
    Taherian Reza, Najafizadeh Abbas, Shateri Reza, J. Mater. Process. Technol., (2008), 196, pp. 321 – 331CrossRefGoogle Scholar
  24. 24.
    M. Opiela, W. Zalecki, A. Grajcar, Journal of Achievements in Materials and Manufacturing Engineering, (2012), 51, pp. 78 – 89Google Scholar
  25. 25.
    R. Kawulok, I. Sshindler, P. Kawulok, S. Rusz, P. Opela, Z. Solowski, K. M. Cmiel, METALURGIJA, (2015), 54, pp. 473 – 476Google Scholar
  26. 26.
    S. Rusz, I. Schindler, P. Kawulok, R. Kawulok, P. Opela, J. Kliber, Z. Solowski, METALURGIJA, (2016), 55, pp. 655 - 658Google Scholar
  27. 27.
    H.-H. Bok, M.-G. Lee, E.J. Pavlina, F. Barlat, H.-D. Kim,, Int. J. Mech. Sci., (2011), 53, pp. 744 – 52CrossRefGoogle Scholar
  28. 28.
    Junjia Cui, Chengxi Lei, Zhongwen Xing, Chunfeng Li, and Shumei Ma, J. Mater. Eng. Perform., 21 (2012), pp. 2244 – 2254CrossRefGoogle Scholar
  29. 29.
    W. Weiß, R. Kolleck, M. Machhammer, and F. Krall: 4th International Conference Hot Sheet Metal Forming of High-Performance Steel CHS2, Sweden Proceedings, June 9–12, 2013, Luleå, 2013, pp. 91–98.Google Scholar
  30. 30.
    LSTC: LS-DYNA Keyword User’s Manual Version 9.71. Livermore Software Technology Corporation, July 2006.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan

Personalised recommendations