Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2393–2404 | Cite as

Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K

  • Kosuke UekiEmail author
  • Kyosuke Ueda
  • Masaaki Nakai
  • Takayoshi Nakano
  • Takayuki Narushima


Microstructural changes were observed during the plastic deformation of ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy heat-treated at 873 K (600 °C) for 14.4 ks, and analyzed by electron backscatter diffraction and in situ X-ray diffraction techniques. The obtained results revealed that the area fraction of the ε-phase (fε) in the as-received alloy was higher than that in the heat-treated alloy in the low-to-middle strain region (≤ 50 pct), whereas the fε of the heat-treated alloy was higher than that of the as-received alloy at the fracture point. During plastic deformation, the ε-phase was preferentially formed at the twin boundaries of the heat-treated alloy rather than at the grain boundaries. According to the transmission electron microscopy observations, the thin ε-phase layer formed due to the alloy heat treatment acted as the origin of deformation twinning, which decreased the stress concentration at the grain boundaries. The results of anodic polarization testing showed that neither the heat treatment at 873 K (600 °C) nor plastic deformation affected the alloy corrosion properties. To the best of our knowledge, this is the first study proving that the formation of a thin ε-phase layer during the low-temperature heat treatment of the studied alloy represents an effective method for the enhancement of the alloy ductility without sacrificing its strength and corrosion properties.



This study was financially supported by the Japan Society for the Promotion of Science KAKENHI (Grant Number JP 16J04279).


  1. 1.
    J. Favre, Y. Koizumi, A. Chiba, D. Fabregue and E. Maire: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2819–2830.CrossRefGoogle Scholar
  2. 2.
    P. Poncin and J. Proft: Med. Device Mater., Proc. Mater. Process. Med. Devices Conf., 2003, pp. 253–59.Google Scholar
  3. 3.
    F.R. Morral: J. Mater., 1966, vol. 1, pp. 384–412.Google Scholar
  4. 4.
    R.V. Marrey, R. Butgermeister, R. B. Grishaber and R. O. Ritchie: Biomaterials, 2006, vol. 27, pp. 1988–2000.CrossRefGoogle Scholar
  5. 5.
    K. Ueki, K. Ueda and T. Narushima: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2773–2782.CrossRefGoogle Scholar
  6. 6.
    T. Narushima, S. Mineta, Y. Kurihara and K. Ueda: JOM 2013 vol. 65, pp. 489–504.CrossRefGoogle Scholar
  7. 7.
    Y. Koizumi, S. Suzuki, K. Yamanaka, B-S. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto and A. Chiba: Acta Mater., 2013, vol. 61, pp. 1648–1661.CrossRefGoogle Scholar
  8. 8.
    K. Yamanaka, M. Mori, S. Kurosu, H. Matsumoto and A. Chiba: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1980–1994.CrossRefGoogle Scholar
  9. 9.
    K. Yamanaka, M. Mori and A. Chiba: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4875–4887.CrossRefGoogle Scholar
  10. 10.
    K Yamanaka, M. Mori and A. Chiba: Acta Biomater., 2013, vol. 9, pp. 6259–6267.CrossRefGoogle Scholar
  11. 11.
    S. Kurosu, H. Matsumoto, A. Chiba, C. Landron, D. Fabregue and E. Maire: Scr. Mater., 2011, Vol. 64, pp 367–370.CrossRefGoogle Scholar
  12. 12.
    K. Hagihara, T. Nakano and K. Sasaki: Scr. Mater. 2016. Vol. 123, pp 149–153.CrossRefGoogle Scholar
  13. 13.
    J. Teague, E. Cerreta and M. Stout: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2767–2781.CrossRefGoogle Scholar
  14. 14.
    R. K. Gupta, M. K. Karthikeyan, D. N. Bhalia, B. R. Ghosh and P. P. Sinha: Met. Sci. Heat Treat., 2008, vol. 50, pp. 175–178.CrossRefGoogle Scholar
  15. 15.
    N. Yukawa and K. Sato: Mater. Trans. JIM, 1968, vol. 9, pp. 680–686.Google Scholar
  16. 16.
    M. Tanaka and H. Iizuka: Metall. Mater. Trans. A, 1992, vol. 23, pp. 609–616.CrossRefGoogle Scholar
  17. 17.
    P. Poncin, B. Gruez, P. Missillier, and P. Comte-Gaz: Med. Device Mater. III, Proc. Mater. Process. Med. Devices Conf., 2006, pp. 85–90.Google Scholar
  18. 18.
    P. Poncin, C. Millet, and J. Chevy: Med. Device Mater. II, Proc. Mater. Process. Med. Devices Conf., 2nd, 2004, pp. 279–83.Google Scholar
  19. 19.
    W. Walke, Z. Paszenda and J. Tyrlik-Held: Journal of Achievements in Materials and Manufacturing Engineering, 2006, vol. 16, pp.74–79.Google Scholar
  20. 20.
    S. Mineta, Alfirano, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3351–3358.CrossRefGoogle Scholar
  21. 21.
    S. Mineta, S. Namba, T. Yoneda, T. Ueda and T. Narushima: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2129–2138.CrossRefGoogle Scholar
  22. 22.
    D. T. Sawyer, A. J. Sobkowiak and J. L. Roberts, Jr.: Electrochemistry for Chemists, 2nd ed., John Wiley & Sons, New York, NY, 1995, pp 192.Google Scholar
  23. 23.
    S. Hiromoto, E.Onodera, A. Chiba, K. Asami and T. Hanawa: Biomaterials, 2005 vol. 26, pp. 4912–4923.CrossRefGoogle Scholar
  24. 24.
    H. M. Tawancy, V. R. Ishwar and B. E. Lewis: J. Mater. Sci. Lett., 1986, vol. 5, pp. 337–341.CrossRefGoogle Scholar
  25. 25.
    H. Fujita and T. Mori: Scr. Metall., 1975, Vol. 9, pp. 631–636.CrossRefGoogle Scholar
  26. 26.
    C. Montero-Ocampo, R. Juarez and A. Salinas Rodriguez: Metall. Mater. Trans. A, 2002, vol. 33, pp. 2229–2235.CrossRefGoogle Scholar
  27. 27.
    M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai: Acta Mater., 2006, vol. 54, pp. 5179–5184.CrossRefGoogle Scholar
  28. 28.
    A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian and J. A. Szpunar: Mater. Charact., 2015, vol. 106, pp. 27–35.CrossRefGoogle Scholar
  29. 29.
    A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian, M. Nezakat and J. A. Szpunar: Surf. Coat. Tech., 2015, vol. 264, pp. 150-162.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Kosuke Ueki
    • 1
    Email author
  • Kyosuke Ueda
    • 1
  • Masaaki Nakai
    • 2
  • Takayoshi Nakano
    • 3
  • Takayuki Narushima
    • 1
  1. 1.Department of Materials ProcessingTohoku UniversitySendaiJapan
  2. 2.Department of Mechanical EngineeringKindai UniversityHigashiōsakaJapan
  3. 3.Division of Materials Science and EngineeringOsaka UniversityOsakaJapan

Personalised recommendations