Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2182–2192 | Cite as

Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium

  • G. S. Peng
  • Y. Wang
  • Z. Fan
Article
  • 221 Downloads

Abstract

Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.

Notes

Acknowledgments

This work is financially supported by the Key University Science Research Project of AnHui Province (KJ2017A054), Priority Funding Scheme for Innovative Projects for Overseas Chinese Students in Anhui Province, EPSRC under Grant Numbers of EP/H026177/1 for the EPSRC Centre – LiME, and EP/I038616/1 for the TARF-LCV programme.

References

  1. 1.
    W.J. Joost: Automotive Magnesium: Impacts and Opportunities, Magnesium Technology, Wiley and TMS, 2014, pp.3-4.Google Scholar
  2. 2.
    E.L. Rooy: Metals Handbook, Metals Park, ASM vol.15, 1978, pp.750.Google Scholar
  3. 3.
    [3] D.G. McCartney: Int. Mater. Rev., 1989, vol.34, pp.247-60.CrossRefGoogle Scholar
  4. 4.
    B.S. Murty, S. AKori, and M. Charkraborty: Inter. Mater., Rev. 2002, 47, 3–29.CrossRefGoogle Scholar
  5. 5.
    P.S. Mohanty and J.E. Gruzleski: Acta Metall. Mater., 1995, vol.43, pp.2001-12.CrossRefGoogle Scholar
  6. 6.
    D.H. Stjohn, M.A. Easton, Q. Ma and J.A. Taylor: Metall. Mater. Trans. A, 2013, vol.44, pp. 2935-49.CrossRefGoogle Scholar
  7. 7.
    B.P. Pearce and H.W. Kerr: Metall. Trans. B, 1981, vol.12, pp.479-86.CrossRefGoogle Scholar
  8. 8.
    A. Ramirez, Q. Ma, B. Davis, T. Wilks and D.H. StJohn: Script Mater., 2008, vol.59, pp. 19-22.CrossRefGoogle Scholar
  9. 9.
    Z. Fan, Y. Wang, Z.F. Zhang, M.Xia, H.T. Li, J. Xu, L. Granasy and G.M. Scamans: Int. J. Cast Met. Res., 2009, vol. 22, pp.318-22.CrossRefGoogle Scholar
  10. 10.
    M.J. Li, T. Tamura and K. Miwa: Acta Mater., 2007, vol.55, pp.4635-43.CrossRefGoogle Scholar
  11. 11.
    E.F. Emley: Principles of Magnesium Technology, Oxford: Pergamon, 1966, pp.127-55.Google Scholar
  12. 12.
    W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Oxford, 1958, pp. 126–37.Google Scholar
  13. 13.
    Y.C. Lee, A.K. Dahle and D.H. StJohn: Metal. Mater. Trans. A, 2000, vol.31, pp.2895-906.CrossRefGoogle Scholar
  14. 14.
    F. Saueerwald: Z. Anorg. Chem., 1947, vol. 255, pp.212-20.CrossRefGoogle Scholar
  15. 15.
    D. Vinotha, K. Raghukandan, U.T.S. Pillai and B.C. Pai: Trans. Indian Institute Metals, 2009, vol.62, pp.521-32.CrossRefGoogle Scholar
  16. 16.
    Q. Ma and D.H. StJohn: Inter. J. Cast Metals Res., 2009, vol.22, pp.256-59.CrossRefGoogle Scholar
  17. 17.
    P. Cao, Q. Ma, D.H. StJohn and M. T. Frost: Mater. Sci. Tech., 2004, vol.20, pp.585-92.CrossRefGoogle Scholar
  18. 18.
    Q. Ma, D.H. StJohn and M.T. Frost: Script Mater., 2002, vol.46, pp.649-54.CrossRefGoogle Scholar
  19. 19.
    Q. Ma, D.H. StJohn and M.T. Frost: Script Mater., 2004, vol.50, pp.1115-9.CrossRefGoogle Scholar
  20. 20.
    Q. Ma, D.H. StJohn and M.T. Frost: Mater. Sci. Forum, 2003, vol.419-422, pp.593-8.Google Scholar
  21. 21.
    Q. Ma, L. Zheng, D. Graham, M.T. Frost and D.H. StJohn: J. Light Metal., 2001, vol.1, pp.157-65.CrossRefGoogle Scholar
  22. 22.
    Y. Tamura, N. Kono, T. Motegi and E. Sato: J. Jpn. Inst. Light Metal, 1998, vol.48, pp. 185-9.CrossRefGoogle Scholar
  23. 23.
    Z. Fan, Y. Wang, M. Xia and S. Arumuganathar: Acta Mater., 2009, vol.57, pp.4891-901.CrossRefGoogle Scholar
  24. 24.
    H.T. Li, Y. Wang and Z. Fan: Acta Mater., 2012, vol.60, pp.1528-37.CrossRefGoogle Scholar
  25. 25.
    Y.B. Zuo, B. Jiang and Z. Fan: Mater. Sci. Forum, 2011, vol.690, pp.137-40.CrossRefGoogle Scholar
  26. 26.
    H. Men, B. Jiang and Z. Fan: Acta Mater., 2010, vol.58, pp.6526-34.CrossRefGoogle Scholar
  27. 27.
    Y. Wang, Z. Fan, X. Zhou and G. E. Thompson: Philos. Mag. Lett., 2011, vol.91, pp.516-29.CrossRefGoogle Scholar
  28. 28.
    T.E. Quested: Mater. Sci. Tech., 2004, vol.20, pp.1357-69.CrossRefGoogle Scholar
  29. 29.
    M.A. Easton and D.H. Stjohn: Acta Mater., 2001, vol.49, pp.1867-78.CrossRefGoogle Scholar
  30. 30.
    H. Men and Z. Fan: Acta Mater., 2011, vol.59, pp.2704-12.CrossRefGoogle Scholar
  31. 31.
    J.H. Perepezko: Metals Handbook, vol. 15, Metals Park: ASM, 1978, p.105.Google Scholar
  32. 32.
    A.M. Bunn, P. Schumacher, M.A. Kearns, C.B. Boothroyd and A.L. Greer: Mater. Sci. Tech., 1999, vol.15, pp.1115-23.CrossRefGoogle Scholar
  33. 33.
    M. Chakraborty, G.S. Vinod Kumar and B.S. Murty: Trans. Indian Inst. Met., 2005, vol.58, pp.661-70.Google Scholar
  34. 34.
    Q. Ma, L. Zheng, D. Graham, M.T. Frost and D.H. StJohn: J. Light Metal. 2001, vol.1, pp.157-65.CrossRefGoogle Scholar
  35. 35.
    T. Gudmundsson, T.I. Sigfusson, D.G. McCartney, E. Wuilloud and P. Fisher: Light Metals, The Minerals, Metals and Materials Society, Warrendale, PA, 1995, pp.851-854.Google Scholar
  36. 36.
    I. Maxwell and A. Hellawell: Acta Metall., 1975, vol.23, pp.229-37.CrossRefGoogle Scholar
  37. 37.
    A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater., 2000, vol.48, pp.2823-35.CrossRefGoogle Scholar
  38. 38.
    Z. Fan: Metall. Mater. Trans., 2013, vol.44, pp.1409-18.CrossRefGoogle Scholar
  39. 39.
    H. Men and Z. Fan: Comp. Mater. Sci., 2014, vol.85, pp.1-7.CrossRefGoogle Scholar
  40. 40.
    Z. Fan, Y.B. Zuo and B. Jiang: Apparatus & Method for Liquid Metals Treatment, 2013, US patent, Authorized No. US20130228045.Google Scholar
  41. 41.
    Standard test procedures for aluminum alloy grain refiners (TP-1), The Aluminium Association, Washington, DC, 1990.Google Scholar
  42. 42.
    V.E. Henrich and P.A. Cox: The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, 1994, p.32.Google Scholar
  43. 43.
    A.F. Moodie, C.E. Warble: J. Cryst. Growth, 1971, vol.10, pp.26-38.CrossRefGoogle Scholar
  44. 44.
    P. Saha: An Analysis of the Grain Refinement of Magnesium by Zirconium, PhD thesis, Alabama University, Tuscaloosa, 2010.Google Scholar
  45. 45.
    A.A. Nayeb-Hashemi, J.B. Clark: ASM Handbook, Alloy Phase Diagrams, 1998, p. 1114.Google Scholar
  46. 46.
    G. Wan and P.R. Sahm: Acta Metall. Mater., 1990, vol.38, pp.2367-72.CrossRefGoogle Scholar
  47. 47.
    D. Uffelmann, W. Bender, L. Ratke and B. Feuerbacher: Acta Metall. Mater., 1995, vol.43, pp.173-80.Google Scholar
  48. 48.
    L. Ratke and W.K. Thieringer: Acta Metall. Mater., 1985, vol.33, pp.1793-802.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringAnhui University of TechnologyMa’anshanP.R. China
  2. 2.BCAST, Brunel UniversityUxbridgeUK

Personalised recommendations