Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2257–2268 | Cite as

Effects of Deformation Mode and Strain Level on Grain Boundary Character Distribution of 304 Austenitic Stainless Steel

  • Wen Feng
  • Sen Yang
  • Yinbiao Yan


In this study, the effects of deformation mode (rolling and tension) and strain level on grain boundary character distribution were systematically investigated in 304 austenitic stainless steel. The experimental results showed that the 〈110〉 component parallel to the normal direction orientation and the P(BND) {110}〈111〉 texture were predominant in the rolled specimens and the tensioned ones, respectively. For each mode of deformation, the fraction of low-Σ coincidence site lattice (CSL) boundaries, especially Σ3n (n = 1, 2, 3) boundaries decreased with the increasing strain level after annealing. At a lower strain level, the type of texture played a leading role in grain boundary reconstruction during annealing, and the 〈110〉 component parallel to the normal direction orientation facilitated the formation of low-Σ CSL boundaries during annealing compared with the P(BND) texture. However, for a higher strain level, the stored energy became dominant in grain boundary reconstruction during annealing, and a large stored energy was detrimental to the formation of low-Σ CSL boundaries, which resulted in a higher fraction of low-Σ CSL boundaries in the tensioned specimen than that in the rolled one after annealing.



This work was supported by National Natural Science Foundation of China under Grant numbers: 50871055 and 51474132, and the Fundamental Research Funds for the Central Universities under Grant number 30917014106. The partial supports of this work from PAPD and Jiangsu Key Lab of Micro-Nano Materials and Technology are also acknowledged.


  1. 1.
    F. Shi, P.C. Tian, N. Jia, Z.H. Ye, Y. Qi, C.M. Liu, X.W. Li: Corros. Sci., 2016, vol. 107, pp. 49-59.CrossRefGoogle Scholar
  2. 2.
    S. Kobayashi, R. Kobayashi, T. Watanabe: Acta Mater., 2016, Vol. 102, pp. 397-405.CrossRefGoogle Scholar
  3. 3.
    C. Hu, S. Xia, H. Li, T. Liu, B. Zhou, W. Chen, N. Wang: Corros. Sci., 2011, Vol. 53, pp. 1880-86.CrossRefGoogle Scholar
  4. 4.
    J.J. Kai, F.R. Chen, T.S. Duh: Mater. Trans., 2004, Vol. 45, pp. 40-50.CrossRefGoogle Scholar
  5. 5.
    M. Sekine, N. Sakaguchi, M. Endo, H. Kinashita, S. Watanabe, H. Kokawa, S. Yamashita, Y. Yano, M. Kawai: J. Nucl. Mater., 2011, Vol. 414, pp. 232-36.CrossRefGoogle Scholar
  6. 6.
    V.Y. Gertsman, S.M. Bruemmer: Acta Mater., 2001, Vol. 49, pp. 1589-98.CrossRefGoogle Scholar
  7. 7.
    M. Kurban, U. Erb, K.T. Aust: Scr. Mater., 2006, Vol. 54, pp. 1053-58.CrossRefGoogle Scholar
  8. 8.
    H.Y. Bi, H. Kokawa, Z.J. Wang, M. Shimada, Y.S. Sato: Scr. Mater., 2003, Vol. 49, pp. 219-23.CrossRefGoogle Scholar
  9. 9.
    H. Kokawa, M. Shimada, M. Michiuchi, Z.J. Wang, Y.S. Sato: Acta Mater., 2007, Vol. 55, pp. 5401-07.CrossRefGoogle Scholar
  10. 10.
    L. Tan, K. Sridharan, T.R. Allen, R.K. Nanstad, D.A. McClintock: J. Nucl. Mater., 2008, Vol. 374, pp. 270-80.CrossRefGoogle Scholar
  11. 11.
    T. Watanabe: Res. Mech., 1984, Vol. 11, pp. 47-84.Google Scholar
  12. 12.
    V. Randle, H. Davies: Metall. Mater. Trans. A, 2002, Vol. 33, pp. 1853-57.CrossRefGoogle Scholar
  13. 13.
    A. Telang, A.S. Gill, D. Tammana, X. Wen, M. Kumar, S. Teysseyre, S.R. Mannava, D. Qian, V.K. Vasudevan: Mater. Sci. Eng. A, 2015, Vol. 648, pp. 280-88.CrossRefGoogle Scholar
  14. 14.
    A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S. R. Mannava, V.K. Vasudevan: Acta Mater., 2016, Vol. 113, pp. 180-93.CrossRefGoogle Scholar
  15. 15.
    W. Wang, H. Guo: Mater. Sci. Eng. A, 2007, Vol. 445, pp. 155-62.CrossRefGoogle Scholar
  16. 16.
    D.S. Lee, H.S. Ryoo, S.K. Hwang: Mater. Sci. Eng. A, 2003, Vol. 354, pp. 106-11.CrossRefGoogle Scholar
  17. 17.
    S. Yang, Z. Wang, H. Kokawa, Y.S. Sato: Mater. Sci. Eng. A, 2008, Vol. 474, pp. 112-19.CrossRefGoogle Scholar
  18. 18.
    W. Feng, S. Yang: Appl. Phys. A, 2016, Vol. 122, pp. 1018.CrossRefGoogle Scholar
  19. 19.
    M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe: Acta Mater., 2002, Vol. 50, pp. 2331-41.CrossRefGoogle Scholar
  20. 20.
    C.A. Schuh, M. Kumar, W.E. King: Acta Mater., 2003, Vol. 51, pp. 687-700.CrossRefGoogle Scholar
  21. 21.
    A.J. Schwartz, W.E. King, M. Kumar: Scr. Mater., 2006, Vol. 54, pp. 963-68.CrossRefGoogle Scholar
  22. 22.
    X. Wang, A. Dallemagne, Y. Hou, S. Yang: Mater. Sci. Eng. A, 2016, Vol. 669, pp. 95-102.CrossRefGoogle Scholar
  23. 23.
    S.L. Lee, N.L. Richards: Mater. Sci. Eng. A, 2005, Vol. 390, pp. 81-87.CrossRefGoogle Scholar
  24. 24.
    M. Kumar, W.E. King, A.J. Schwartz: Acta Mater., 2000, Vol. 48, pp. 2081-91.CrossRefGoogle Scholar
  25. 25.
    R. Joham, N.K. Sharma, K. Mondal, S. Shekhar: J. Mater. Process. Tech., 2017, Vol. 240, pp. 324-31.CrossRefGoogle Scholar
  26. 26.
    Z. Li, L. Zhang, N. Sun, Y. Sun, A. Shan: Mater. Charact., 2014, Vol. 95, pp. 299-306.CrossRefGoogle Scholar
  27. 27.
    B. Li, S. Tin: Mater. Sci. Eng. A, 2014, Vol. 603, pp. 104-13.CrossRefGoogle Scholar
  28. 28.
    W. Huang, L. Chai, Z. Li, X. Yang, N. Guo, B. Song: Mater. Charact., 2016, Vol. 114, pp. 204-10.CrossRefGoogle Scholar
  29. 29.
    S. Tokita, H. Kokawa, Y.S. Sato, H.T. Fujii: Mater. Charact., 2017, Vol. 131, pp. 31-38.CrossRefGoogle Scholar
  30. 30.
    V. Randle, R. Jones: Mater. Sci. Eng. A, 2009, Vol. 524, pp. 134-42.CrossRefGoogle Scholar
  31. 31.
    R. Jones, V. Randle: Mater. Sci. Eng. A, 2010, Vol. 527, pp. 4275-80.CrossRefGoogle Scholar
  32. 32.
    D.G. Brandon: Acta Metall., 1966, Vol. 14, pp. 1479-84.CrossRefGoogle Scholar
  33. 33.
    S. Yang, Z.J. Wang, H. Kokawa, Y.S. Sato: J. Mater. Sci., 2007, Vol. 42, pp. 847-53.CrossRefGoogle Scholar
  34. 34.
    T. Watanabe: Mater. Sci. Eng. A, 1993, Vol. 166, pp. 11-28.CrossRefGoogle Scholar
  35. 35.
    Y. Takayama, J.A. Szpunar: Mater. Trans., 2004, Vol. 45, pp. 2316-25.CrossRefGoogle Scholar
  36. 36.
    J. Weertman, S.S. Hecker: Mech. Mater., 1983, Vol. 2, pp. 89-101.CrossRefGoogle Scholar
  37. 37.
    N.P. Gurao, R. Kapoor, S. Suwas: Metall. Mater. Trans. A, 2010, Vol. 41, pp. 2794-804.CrossRefGoogle Scholar
  38. 38.
    V. Randle, G. Owen: Acta Mater., 2006, Vol. 54, pp. 1777-83.CrossRefGoogle Scholar
  39. 39.
    V. Randle: Acta Mater., 2004, Vol. 52, pp. 4067-81.CrossRefGoogle Scholar
  40. 40.
    W. Wang, B. Zhou, L. Feng, X. Zhang, S. Xia: Acta Metall. Sin., 2006, Vol. 42, pp. 715-21.Google Scholar
  41. 41.
    S. Mahajan, C.S. Pande, M.A. Ima, B.B, Rath: Acta Mater., 1997, Vol. 45, pp. 2633-38.CrossRefGoogle Scholar
  42. 42.
    H. Gleiter: Acta Metall., 1969, Vol. 17, pp. 1421-28.CrossRefGoogle Scholar
  43. 43.
    M. Detrois, R.L. Goetz, R.C. Helmink, S. Tin: J. Mater. Sci., 2016, Vol. 51, pp. 5122-38.CrossRefGoogle Scholar
  44. 44.
    S. Birosca, F.D. Gioacchino, S. Stekovic, M. Hardy: Acta Mater., 2014, Vol. 74, pp. 110-24.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations