Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2340–2351 | Cite as

MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys

  • Stoichko Antonov
  • Wei Chen
  • Jiajie Huo
  • Qiang Feng
  • Dieter Isheim
  • David N. Seidman
  • Eugene Sun
  • Sammy Tin


Carbide precipitates in Ni-based superalloys are considered to be desirable phases that can contribute to improving high-temperature properties as well as aid in microstructural refinement of the material; however, they can also serve as crack initiation sites during fatigue. To date, most of the knowledge pertaining to carbide formation has originated from assessments of cast and wrought Ni-based superalloys. As powder-processed Ni-based superalloys are becoming increasingly widespread, understanding the different mechanisms by which they form becomes increasingly important. Detailed characterization of MC carbides present in two experimental high Nb-content powder-processed Ni-based superalloys revealed that Hf additions affect the resultant carbide morphologies. This morphology difference was attributed to a higher magnitude of elastic strain energy along the interface associated with Hf being soluble in the MC carbide lattice. The composition of the MC carbides was studied through atom probe tomography and consisted of a complex carbonitride core, which was rich in Nb and with slight Hf segregation, surrounded by an Nb carbide shell. The characterization results of the segregation behavior of Hf in the MC carbides and the subsequent influence on their morphology were compared to density functional theory calculations and found to be in good agreement, suggesting that computational modeling can successfully be used to tailor carbide features.



Financial support for this work was provided by Rolls-Royce Corporation. APT was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The local-electrode atom-probe tomograph at NUCAPT was acquired and upgraded with equipment grants from the MRI program of the National Science Foundation (Grant Number DMR-0420532) and the DURIP program of the Office of Naval Research (Grant Numbers N00014-0400798, N00014-0610539, N00014-0910781). This work made use of the MatCI Facility at Northwestern University. NUCAPT and MatCI received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center, NUCAPT through the SHyNE Resource (NSF NNCI-1542205), and the Initiative for Sustainability and Energy at Northwestern (ISEN). This work made use of the EPIC, Keck-II, and/or SPID facility(ies) of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


  1. 1.
    T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.CrossRefGoogle Scholar
  2. 2.
    D. Furrer and H. Fecht: JOM, 1999, vol. 51, pp. 14–7.CrossRefGoogle Scholar
  3. 3.
    C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, Wiley, New York, 1987.Google Scholar
  4. 4.
    R.F. Decker and C.T. Sims: The Metallurgy of Nickel-Base Superalloys, Paul D. Merica Research Laboratory, 1972.Google Scholar
  5. 5.
    R.R. Unocic, L. Kovarik, C. Shen, P.M. Sarosi, Y. Wang, J. Li, S. Ghosh, and M.J. Mills: in Superalloys 2008 (Eleventh International Symposium), TMS, 2008, pp. 377–85.Google Scholar
  6. 6.
    R.R. Unocic, G.B. Viswanathan, P.M. Sarosi, S. Karthikeyan, J. Li, and M.J. Mills: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 25–32.CrossRefGoogle Scholar
  7. 7.
    D. Locq, P. Caron, S. Raujol, F. Pettinari-Sturmel, A. Coujou, and N. Clement: in Superalloys 2004 (Tenth International Symposium), TMS, 2004, pp. 179–87.Google Scholar
  8. 8.
    R.C. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.Google Scholar
  9. 9.
    M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, 2nd edn., Asm International, Materials Park, OH, 2002.Google Scholar
  10. 10.
    T.M. Pollock and R.D. Field: in Dislocations in Solids, vol. 11, 2002, pp. 547–618.Google Scholar
  11. 11.
    R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1588–603.CrossRefGoogle Scholar
  12. 12.
    Y. Mishima, S. Ochiai, M. Yodogawa, and T. Suzuki: Trans. Japan Inst. Met., 1986, vol. 27, pp. 41–50.CrossRefGoogle Scholar
  13. 13.
    Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, and T. Suzuki: Trans. Japan Inst. Met., 1986, vol. 27, pp. 648–55.CrossRefGoogle Scholar
  14. 14.
    S. Antonov, M. Detrois, D. Isheim, D.N. Seidman, R.C. Helmink, R.L. Goetz, E. Sun, and S. Tin: Mater. Des., 2015, vol. 86, pp. 649–55.CrossRefGoogle Scholar
  15. 15.
    G.W. Meetham: Met. Technol., 1984, vol. 11, pp. 414–8.CrossRefGoogle Scholar
  16. 16.
    L.Z. He, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, A.K. Tieu, C. Lu, and H.T. Zhu: Mater. Sci. Eng. A, 2005, vol. 397, pp. 297–304.CrossRefGoogle Scholar
  17. 17.
    C.-N. Wei, H.-Y. Bor, and L. Chang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3741–7.CrossRefGoogle Scholar
  18. 18.
    A.K. Jena and M.C. Chaturvedi: J. Mater. Sci., 1984, vol. 19, pp. 3121–39.CrossRefGoogle Scholar
  19. 19.
    F.T. Furillo, J.M. Davidson, J.K. Tien, and L.A. Jackman: Mater. Sci. Eng., 1979, vol. 39, pp. 267–73.CrossRefGoogle Scholar
  20. 20.
    A. Pineau and S.D. Antolovich: Eng. Fail. Anal., 2009, vol. 16, pp. 2668–97.CrossRefGoogle Scholar
  21. 21.
    J. Jiang, J. Yang, T. Zhang, J. Zou, Y. Wang, F.P.E. Dunne, and T.B. Britton: Acta Mater., 2016, vol. 117, pp. 333–44.CrossRefGoogle Scholar
  22. 22.
    P. Kontis, D.M. Collins, A.J. Wilkinson, R.C. Reed, D. Raabe, and B. Gault: Scr. Mater., 2018, vol. 147, pp. 59–63.CrossRefGoogle Scholar
  23. 23.
    X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, J.S. Hou, and H.Q. Ye: Mater. Sci. Eng. A, 2008, vol. 485, pp. 74–79.CrossRefGoogle Scholar
  24. 24.
    G. Lvov, V.I. Levit, and M.J. Kaufman: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1669–79.CrossRefGoogle Scholar
  25. 25.
    X. Dong, X. Zhang, K. Du, Y. Zhou, T. Jin, and H. Ye: J. Mater. Sci. Technol., 2012, vol. 28, pp. 1031–8.CrossRefGoogle Scholar
  26. 26.
    C.T.T. Sims: in Niobium - Proceedings of the international symposium, H. Stuart, ed., Metallurgical Society of AIME, Warrendale, PA, 1981, pp. 1169–1220.Google Scholar
  27. 27.
    P.A.J. Bagot, O.B.W. Silk, J.O. Douglas, S. Pedrazzini, D.J. Crudden, T.L. Martin, M.C. Hardy, M.P. Moody, and R.C. Reed: Acta Mater., 2017, vol. 125, pp. 156–65.CrossRefGoogle Scholar
  28. 28.
    D.N. Duhl and C.P. Sullivan: JOM, 1971, vol. 23, pp. 38–40.CrossRefGoogle Scholar
  29. 29.
    J.E. Doherty, A.F. Giamei, and B.H. Kear: Can. Metall. Q., 1974, vol. 13, pp. 229–36.CrossRefGoogle Scholar
  30. 30.
    C. Lund and J.F. Radavich: in Superalloys 1980 (Fourth International Symposium), TMS, 1980, pp. 85–98.Google Scholar
  31. 31.
    Q.Z. Chen, C.N. Jones, and D.M. Knowles: Scr. Mater., 2002, vol. 47, pp. 669–75.CrossRefGoogle Scholar
  32. 32.
    R. V. Miner: Metall. Trans. A, 1977, vol. 8, pp. 259–63.CrossRefGoogle Scholar
  33. 33.
    Q. Chen, N. Jones, and D. Knowles: Acta Mater., 2002, vol. 50, pp. 1095–1112.CrossRefGoogle Scholar
  34. 34.
    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.CrossRefGoogle Scholar
  35. 35.
    B.H. Toby and R.B. Von Dreele: J. Appl. Crystallogr., 2013, vol. 46, pp. 544–49.CrossRefGoogle Scholar
  36. 36.
    K. Momma and F. Izumi: J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–76.CrossRefGoogle Scholar
  37. 37.
    P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953–79.CrossRefGoogle Scholar
  38. 38.
    G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.CrossRefGoogle Scholar
  39. 39.
    J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–8.CrossRefGoogle Scholar
  40. 40.
    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. a. Persson: APL Mater., 2013, vol. 1, p. 11002.Google Scholar
  41. 41.
    S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder: Comput. Mater. Sci., 2013, vol. 68, pp. 314–9.CrossRefGoogle Scholar
  42. 42.
    R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, and S.P. Ong: Sci. Data, 2016, vol. 3, p. 160080.CrossRefGoogle Scholar
  43. 43.
    A. Mitchell, A.J. Schmalz, C. Schvezov, and S.L. Cockroft: in Superalloys 718, 625, 706 and Various Derivatives (1994), TMS, 1994, pp. 65–78.Google Scholar
  44. 44.
    S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, R.C. Helmink, E. Sun, and S. Tin: Mater. Sci. Eng. A, 2017, vol. 687, pp. 232–40.CrossRefGoogle Scholar
  45. 45.
    O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.Google Scholar
  46. 46.
    J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.CrossRefGoogle Scholar
  47. 47.
    G.D. Smith and S.J. Patel: in Superalloys 718, 625, 706 and Various Derivatives (2005), TMS, 2005, pp. 135–54.Google Scholar
  48. 48.
    M.J. Starink, H. Cama, and R.C. Thomson: Scr. Mater., 1997, vol. 38, pp. 73–80.CrossRefGoogle Scholar
  49. 49.
    A.H. Cottrell: An Introduction to Metallurgy, 2nd edn., The University Press, Cambridge, UK, 1995.Google Scholar
  50. 50.
    C.C. Silva, H.C. De Miranda, M.F. Motta, J.P. Farias, C.R.M. Afonso, and A.J. Ramirez: J. Mater. Res. Technol., 2013, vol. 2, pp. 228–37.CrossRefGoogle Scholar
  51. 51.
    L. Zhang, H. Liu, X. He, Rafi-ud-din, X. Qu, M. Qin, Z. Li, and G. Zhang: Mater. Charact., 2012, vol. 67, pp. 52–64.CrossRefGoogle Scholar
  52. 52.
    C.K. Sudbrack, L.J. Evans, A. Garg, D.E. Perea, and D.K. Schreiber: in Superalloys 2016 (Thirteenth International Symposium), Wiley, Hoboken, NJ, (2016) pp. 927–36.Google Scholar
  53. 53.
    W. Chen, P. Dalach, W.F. Schneider, and C. Wolverton: Langmuir, 2012, vol. 28, pp. 4683–93.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Illinois Institute of TechnologyChicagoUSA
  3. 3.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  4. 4.Northwestern University Center for Atom Probe Tomography (NUCAPT)EvanstonUSA
  5. 5.Rolls-Royce CorporationIndianapolisUSA

Personalised recommendations