Effect of Pre-strain and High Stresses on the Bainitic Transformation of Manganese-boron Steel 22MnB5

Article

Abstract

During the last decade, the use of press-hardened components in the automotive industry has grown considerably. The so-called tailored tempering, also known as partial press hardening, employs locally heated tools seeking to obtain bainitic transformations. This leads to (seamless) zones within the formed parts with higher ductility. Due to the intrinsic nature of this process, phase transformations happen under the influence of high loads and in pre-deformed austenite. The austenite pre-strain state and applied stresses affect the kinetics of the bainitic transformation. Moreover, stresses have an additional relevant effect in this process, the so-called transformation plasticity. Linear transformation plasticity models have been successfully used to predict the behavior in the presence of low stresses. Nonetheless, because of the process’s severe conditions, these tend to fail. A strong nonlinearity of the transformation plasticity strain is observed for applied stresses above the austenite yield strength. Using thermomechanical tests on sheet specimens of a manganese-boron steel (22MnB5), widely utilized in the industry, the effect on the bainitic transformation of various degrees of deformation in the range of 0 to 18 pct, applied stresses in the range of 0 to 250 MPa and the transformation plasticity effect are investigated in this work.

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft under the priority program SPP 1713 “Strong coupling of thermo-chemical and thermo-mechanical states in applied materials,” project PressBain “Modeling bainitic transformations during press-hardening.” The authors thank ThyssenKrupp Steel Europe AG for providing the steel and Mingxuan Lin for the calculation of the chemical driving force.

References

  1. 1.
    H. Karbasian and A. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103-18CrossRefGoogle Scholar
  2. 2.
    W. Marc, C. Hueter, M. Lin, U. Prahl, D. Schicchi, M. Hunkel and R. Spatschek: High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science. JHPCS 2016. Lecture Notes in Computer Science., vol. 10164, Springer International Publishing, 2017, pp 125-38Google Scholar
  3. 3.
    D. Said : Materialwiss. Werkstofftech., 2016, vol. 47, pp. 771-9CrossRefGoogle Scholar
  4. 4.
    G. Greenwood and R. Johnson: Proc. R. Soc. A, 1965, vol. 283, pp. 403-22CrossRefGoogle Scholar
  5. 5.
    C. Magee: Phd Thesis; Carnegie Institute of Technologie University, Pittsburgh, U.S.A., 1966Google Scholar
  6. 6.
    F. Fischer, Q. Sun and K. Tanaka: Appl. Mech. Rev., 1996, vol. 49, pp. 317-64CrossRefGoogle Scholar
  7. 7.
    F. Fischer, Q. Sun and K. Tanaka: Int. J. Plast., 2000, vol. 16, pp. 723-48CrossRefGoogle Scholar
  8. 8.
    M. Wolff, M. Boehm, M. Dalgic and I. Huessler: Comput. Mater. Sci., 2008, vol. 43, pp. 108-14CrossRefGoogle Scholar
  9. 9.
    J. Luetjens and M. Hunkel: HTM, J. Heat Treat. Mater., 2013, vol. 68, pp. 171-7CrossRefGoogle Scholar
  10. 10.
    C. Hueter, M. Lin, D. Schicchi, M. Hunkel, U. Prahl and R. Spatschek: AIMS Mater. Sci., 2015, vol. 2, pp. 319-45CrossRefGoogle Scholar
  11. 11.
    J. Leblond: Int. J. Plast., 1989, vol. 5, pp. 573-91CrossRefGoogle Scholar
  12. 12.
    J. Leblond, G. Mottet and J. Devaux: J. Mech. Phys. Solids, 1986, vol. 34, pp. 395-409CrossRefGoogle Scholar
  13. 13.
    J. Leblond, G. Mottet and J. Devaux: J. Mech. Phys. Solids, 1986, vol. 34, pp. 411-32CrossRefGoogle Scholar
  14. 14.
    J. Leblond, J. Devaux and J. Devaux: Int. J. Plast., 1989, vol. 5, pp. 551-72CrossRefGoogle Scholar
  15. 15.
    L. Taleb and F. Sidoroff: Int. J. Plast., 2003, vol. 19, pp. 1821-42CrossRefGoogle Scholar
  16. 16.
    H. Bhadeshia and D. Edmonds: Metall. Trans. A, 1979, vol. 10, pp. 895-907CrossRefGoogle Scholar
  17. 17.
    H. Bhadeshia: J. Phys. Colloq., 1982, vol. 43, pp. 443-48Google Scholar
  18. 18.
    H. Bhadeshia and D. Edmonds: Met. Sci., 1983, vol. 17, pp. 411-19CrossRefGoogle Scholar
  19. 19.
    H. Bhadeshia and J. Christian: Metall. Trans. A, 1990, vol. 21, pp. 767-97CrossRefGoogle Scholar
  20. 20.
    G. Rees and H. Bhadeshia: Mater. Sci. Technol., 1992, vol. 8, pp. 985-93CrossRefGoogle Scholar
  21. 21.
    G. Rees and H. Bhadeshia: Mater. Sci. Technol., 1992, vol. 8, pp. 994-1003CrossRefGoogle Scholar
  22. 22.
    H. Bhadeshia: J. Mater. Sci. Eng. A, 1999, vol. 273-275, pp. 58-66CrossRefGoogle Scholar
  23. 23.
    F. Caballero, H. Bhadeshia, K. Mawella, D. Jones and P. Brown: Mater. Sci. Technol., 2001, vol. 17, pp. 512-6CrossRefGoogle Scholar
  24. 24.
    F. Caballero, H. Bhadeshia, K. Mawella, D. Jones and P. Brown: Mater. Sci. Technol., 2002, vol. 18, pp. 279-84CrossRefGoogle Scholar
  25. 25.
    C. Garcia-Mateo, F. Caballero and H. Bhadeshia: ISIJ Int., 2003, vol. 43, pp. 1821-5CrossRefGoogle Scholar
  26. 26.
    H. Matsuda and H. Bhadeshia: Proc. R. Soc. A, 2004, vol. 460, pp. 1707-22CrossRefGoogle Scholar
  27. 27.
    F. Caballero, M. Miller, S. Babu and C. Garcia-Mateo: Acta Mater., 2007, vol. 55, pp. 381-90CrossRefGoogle Scholar
  28. 28.
    L.C.D. Fielding: Mater. Sci. Technol., 2013, vol. 29, pp. 383-99CrossRefGoogle Scholar
  29. 29.
    D. Gaude-Fugarolas, P.J. Jacques: ISIJ Int., 2006, vol. 46, pp. 712-7CrossRefGoogle Scholar
  30. 30.
    M. Takahashi: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 213-7CrossRefGoogle Scholar
  31. 31.
    T.C. Tzeng, Autocatalysis in bainite transformations. Mater. Sci. Eng. A293 (2000), 185–90CrossRefGoogle Scholar
  32. 32.
    N. Zolotorevsky, E. Nesterova, Y. Titovets, E. Khlusova: Int. J. Mat. Res., 2013, vol. 104, pp. 337-43CrossRefGoogle Scholar
  33. 33.
    S. van Bohemen and J. Sietsma: Int. J. Mater. Res., 2008, vol. 99, pp. 739-47CrossRefGoogle Scholar
  34. 34.
    C. Simsir and C. Guer: Quenching Theory and Technology, 2nd ed., CRC Press, Taylor & Francis Group, 2010, pp. 605-67Google Scholar
  35. 35.
    D. Said Schicchi, F. Hoffmann, M. Hunkel and T. Luebben: Fatigue Fract. Eng. Mater. Struct., 2017, vol. 40, pp. 556-70CrossRefGoogle Scholar
  36. 36.
    D. Said Schicchi, A. Caggiano, T. Luebben, M. Hunkel and F. Hoffmann: Mater. Perform. Charact., 2017, vol. 6, pp. 80-104Google Scholar
  37. 37.
    D. Said Schicchi, A. Caggiano, S. Benito and F. Hoffmann: Theor. Appl. Fract. Mech., 2017, vol. 90, pp. 154-164CrossRefGoogle Scholar
  38. 38.
    G. Rees and P. Shipway: J. Mater. Sci. Eng. A, 1997, vol. 223, pp. 168-78CrossRefGoogle Scholar
  39. 39.
    S. Kundu, K. Hase and H. Bhadeshia: Proc. R. Soc. A, 2007, vol. 463, pp. 2309-28CrossRefGoogle Scholar
  40. 40.
    S. Kundu and H. Bhadeshia: Scr. Mater., 2007, vol. 57, pp. 86972CrossRefGoogle Scholar
  41. 41.
    S. Denis: Mechanics of Solids with Phase Changes, Springer, Vienna, 1997, pp. 293-317CrossRefGoogle Scholar
  42. 42.
    M. Hunkel, T. Luebben, F. Hoffmann and P. Mayr: HTM, Haerterei-Tech. Mitt., 1999, vol. 54, pp. 365-72Google Scholar
  43. 43.
    F. Bachmann, R. Hielscher, H. Schaeben: Solid State Phenomena, 2010, vol. 160, pp. 63-68CrossRefGoogle Scholar
  44. 44.
    S. van Bohemen: Scr. Mater., 2013, vol. 69, pp. 315-18CrossRefGoogle Scholar
  45. 45.
    G. Miyamoto, N. Iwata, N. Takayama and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 6393-403CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Leibniz Institut für Werkstofforientierte Technologien (IWT)BremenGermany

Personalised recommendations