Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2248–2256 | Cite as

Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

  • Meysam Naghizadeh
  • Hamed MirzadehEmail author


Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.


  1. 1.
    C.Y. Lee, C.S. Yoo, A. Kermanpur, and Y.K. Lee: J. Alloy Compd., 2014, vol. 583, pp. 357-360.CrossRefGoogle Scholar
  2. 2.
    M. Calmunger, G. Chai, R. Eriksson, S. Johansson, and J.J. Moverare: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4525-4538.CrossRefGoogle Scholar
  3. 3.
    G. Cios, T. Tokarski, A. Żywczak, R. Dziurka, M. Stępień, Ł. Gondek, M. Marciszko, B. Pawłowski, K. Wieczerzak, and P. Bała: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4999-5008.CrossRefGoogle Scholar
  4. 4.
    S.S. SatheeshKumar, M. Vasanth, VajinderSingh, P. Ghosal, and T. Raghu: J. Alloy. Compd., 2017, vol. 699, pp. 1036-1048.CrossRefGoogle Scholar
  5. 5.
    L. Deibler, A. Brown, and J. Puskar: Metallogr. Microstruct. Anal., 2017, vol. 6, pp. 3-11.CrossRefGoogle Scholar
  6. 6.
    M. Naghizadeh and H. Mirzadeh: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4210-4216.CrossRefGoogle Scholar
  7. 7.
    H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo: Mater. Sci. Eng. A, 2012, vol. 538, pp. 236-245.CrossRefGoogle Scholar
  8. 8.
    C.X. Huang, W.P. Hu, Q.Y. Wang, C. Wang, G. Yang, and Y.T. Zhu: Mater. Res. Lett., 2015, vol. 3, pp. 88-94.CrossRefGoogle Scholar
  9. 9.
    F. Bottoli, G. Winther, T.L. Christiansen, K. Vinter Dahl, and M.A.J. Somers: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4146-4159.CrossRefGoogle Scholar
  10. 10.
    F. Borgioli, E. Galvanetto, and T. Bacci: Vacuum, 2016, vol. 127, pp. 51-60.CrossRefGoogle Scholar
  11. 11.
    Y.S. Kim, S.H. Bak, and S.S. Kim: Metall. Mater. Trans. A, 2016, vol. 47, pp. 222-230.CrossRefGoogle Scholar
  12. 12.
    K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, and Y. Bréchet: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 873-881.CrossRefGoogle Scholar
  13. 13.
    A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, and R.J. Comstock Jr.: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1875-1886.CrossRefGoogle Scholar
  14. 14.
    K. Tomimura, S. Takaki, S. Tanimoto, and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 721-727.CrossRefGoogle Scholar
  15. 15.
    A. Di Schino, M. Salvatori, and J.M. Kenny: J. Mater. Sci., 2002, vol. 7, pp. 4561-4565.CrossRefGoogle Scholar
  16. 16.
    D.L. Johannsen, A. Kyrolinen, and P.J. Ferriera: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2325-2338.CrossRefGoogle Scholar
  17. 17.
    A.F. Padilha, R.L. Plaut, and P.R. Rios: ISIJ Int., 2003, vol. 43, pp. 135-143.CrossRefGoogle Scholar
  18. 18.
    K. Tomimura, S. Takaki, and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 1431-1437.CrossRefGoogle Scholar
  19. 19.
    R.D.K. Misra, J.S. Shah, S. Mali, P.K.C. Venkata Surya, M.C. Somani, and L.P. Karjalainen: Mater. Sci. Tech., 2013, vol. 29, pp. 1185-1192.CrossRefGoogle Scholar
  20. 20.
    A. Poulon-Quintin, S. Brochet, J.B. Vogt, J.C. Glez, and J.D. Mithieux: ISIJ Int., 2009, vol. 49, pp. 293-301.CrossRefGoogle Scholar
  21. 21.
    M. Shirdel, H. Mirzadeh, and M.H. Parsa: Mater. Charact., 2015, vol. 103, pp. 150-161.CrossRefGoogle Scholar
  22. 22.
    C. Celada-Casero, B.M. Huang, M.M. Aranda, J.-R. Yang, and D. San Martin: Mater. Charact., 2016, vol. 118, pp. 129-141.CrossRefGoogle Scholar
  23. 23.
    T. Angel: J. Iron Steel Inst., 1954, vol. 177, pp. 165-174.Google Scholar
  24. 24.
    K. Nohara, Y. Ono, N. Ohashi: J. Iron Steel Inst. Jpn., 1977, vol. 63, pp. 212-222.Google Scholar
  25. 25.
    S.K. Varma, J. Kalyanam, L.E. Murr, and V. Srinivas: J. Mater. Sci. Lett., 1994, vol. 13, pp. 107-111.CrossRefGoogle Scholar
  26. 26.
    V. Seetharaman and R. Krishnan: J. Mater. Sci., 1981, vol 16, pp. 523-530.CrossRefGoogle Scholar
  27. 27.
    M. Eskandari, A. Najafizadeh, and A. Kermanpur: Mater. Sci. Eng. A, 2009, vol. 519, pp. 46-50.CrossRefGoogle Scholar
  28. 28.
    V. Shrinivas, S.K. Varma, and L.E. Murr: Metall. Mater. Trans. A, 1995, vol. 26, pp. 661-671.CrossRefGoogle Scholar
  29. 29.
    N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, and S. Takaki: Acta Mater., 2010, vol. 58, pp. 895-903.CrossRefGoogle Scholar
  30. 30.
    M. Odnobokova, A. Belyakov, and R. Kaibyshev: Adv. Eng. Mater., 2015, vol. 17, pp. 1812-1820.CrossRefGoogle Scholar
  31. 31.
    K. Spencer, M. Veron, K. Yu-Zhang, and J.D. Embury: Mater. Sci. Technol., 2009, vol. 25, pp. 7-17.CrossRefGoogle Scholar
  32. 32.
    Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514-522.CrossRefGoogle Scholar
  33. 33.
    G. Fargas, A. Zapata, J.J. Roa, I. Sapezanskaia, and A. Mateo: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5697-5707.CrossRefGoogle Scholar
  34. 34.
    M. Okayasu, H. Fukui, H. Ohfuji, and T. Shiraishi: J. Mater. Sci., 2013, vol. 48, pp. 6157-6166.CrossRefGoogle Scholar
  35. 35.
    H. Mirzadeh and A. Najafizadeh: Mater. Charact., 2008, vol. 59, pp. 1650-1654.CrossRefGoogle Scholar
  36. 36.
    A. Kisko, A.S. Hamada, J. Talonen, D. Porter, and L.P. Karjalainen: Mater. Sci. Eng. A, 2016, vol. 657, pp. 359-370.CrossRefGoogle Scholar
  37. 37.
    P. Behjati, A. Kermanpur, L.P. Karjalainen, A. Järvenpää, M. Jaskari, H. Samaei Baghbadorani, A. Najafizadeh, and A. Hamada: Mater. Sci. Eng. A, 2016, vol. 650, pp. 119-128.CrossRefGoogle Scholar
  38. 38.
    M. Naghizadeh and H. Mirzadeh: Metall. Mater. Trans. A, 2016, vol. 47, pp. 5698- 5703.CrossRefGoogle Scholar
  39. 39.
    M. Shirdel, H. Mirzadeh, and M.H. Parsa: Mater. Sci. Eng. A, 2015, vol. 624, pp. 256-260.CrossRefGoogle Scholar
  40. 40.
    H. Mirzadeh, M. Alibeyki, and M. Najafi: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4565-4573.CrossRefGoogle Scholar
  41. 41.
    42. B. Fultz and J. Howe: Transmission electron microscopy and diffractometry of materials, 3rd ed., Springer, Berlin, Germany, 2008.Google Scholar
  42. 42.
    A. Etienne, B. Radiguet, C. Genevois, J.M. Le Breton, R. Valiev, and P. Pareige: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5805-5810.CrossRefGoogle Scholar
  43. 43.
    G.B. Olson and M. Cohen: J. Less Common Met., 1972, vol. 28, pp. 107-118.CrossRefGoogle Scholar
  44. 44.
    K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R, 2009, vol. 65, pp. 39-104.CrossRefGoogle Scholar
  45. 45.
    F. Lecroisey and A. Pineau: Metall. Trans., 1972, vol. 3, pp. 387- 396.Google Scholar
  46. 46.
    J.C. Li, M. Zhao, and Q. Jiang: Metall. Mater. Trans. A, 2000, vol. 31, pp. 581-584.CrossRefGoogle Scholar
  47. 47.
    R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6, pp. 1345- 1351.CrossRefGoogle Scholar
  48. 48.
    F. Gauzzi, R. Montanari, G. Principi, A. Perin, M.E. Tata: Mater. Sci. Eng. A, 1999, vol. 273-275, pp. 443-447.CrossRefGoogle Scholar
  49. 49.
    M. Eskandari, A. Kermanpur, A. Najafizadeh: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2241-2249.CrossRefGoogle Scholar
  50. 50.
    M. McGuire: Stainless Steels for Design Engineers, ASM International, Almere, 2008.Google Scholar
  51. 51.
    C.M. Hammond: Cobalt, 1964, vol. 25, pp. 195-202.Google Scholar
  52. 52.
    G.H. Eichelman and F.C. Hull: Trans. Am. Soc. Met., 1953, vol. 45, pp. 77-95.Google Scholar
  53. 53.
    S. Yamamoto, T. Sakiyama, and C. Ouchi: Trans. ISIJ., 1987, vol. 27, pp. 446-452.CrossRefGoogle Scholar
  54. 54.
    A. Di Schino, J.M. Kenny, and G. Abbruzzese: J. Mater. Sci., 2002, vol. 37, pp. 5291-5298.CrossRefGoogle Scholar
  55. 55.
    G. Gottstein and L.S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed., CRC Press, Boca Raton, 2010.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations