Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2455–2462 | Cite as

Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

  • Y. Garip
  • O. OzdemirEmail author


In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.


  1. 1.
    Y. Mishin and C. Herzig: Acta Mater., 2000, vol. 48, pp. 589–623.CrossRefGoogle Scholar
  2. 2.
    D.J. Kim, D.Y. Seo, H. Saari, T. Sawatzky, and Y.-W. Kim: Intermetallics, 2011, vol. 19, pp. 1509–16.CrossRefGoogle Scholar
  3. 3.
    H. Jiang, S. Zeng, A. Zhao, X. Ding, and P. Dong: Mater. Sci. Eng. A, 2016, vol. 661, pp. 160–67.CrossRefGoogle Scholar
  4. 4.
    X. Jiao, X. Wang, X. Kang, P. Feng, and L. Zhang: Mater. Lett., 2016, vol. 181, pp. 261–64.CrossRefGoogle Scholar
  5. 5.
    M. Moser, P.H. Mayrhofer, and H. Clemens: Intermetallics, 2008, vol. 16, pp. 1206–11.CrossRefGoogle Scholar
  6. 6.
    B. Mei and Y. Miyamato: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 843–47.CrossRefGoogle Scholar
  7. 7.
    K. Zhang, Z. Li, and W. Gao: Mater. Lett., 2002, vol. 57, pp. 834–43.CrossRefGoogle Scholar
  8. 8.
    Z. Tang, F. Wang, and W. Wu: Intermetallics, 1999, vol. 7, pp. 1271–74.CrossRefGoogle Scholar
  9. 9.
    X. Shulong, X. Lijuan, Y. Hongbao, and C. Yuyong: Rare Met. Mater. Eng., 2013, vol. 42, pp. 0023–27.CrossRefGoogle Scholar
  10. 10.
    A. Brotzu, F. Felli, and D. Pilone: Intermetallics, 2014, vol.54, pp. 176–80.CrossRefGoogle Scholar
  11. 11.
    D. Pilone and F. Felli: Intermetallics, 2012, vol. 26, pp. 36–39.CrossRefGoogle Scholar
  12. 12.
    B.G. Kim, G.M. Kim, and C.J. Kim: Scripta Metall. Mater., 1995, vol. 33, pp. 1117–25.CrossRefGoogle Scholar
  13. 13.
    Z. Tang, F. Wang, and W. Wu: Intermetallics, 1999, vol. 7, pp. 1271–74.CrossRefGoogle Scholar
  14. 14.
    H. Jiang, J.X. Dong, M.C. Zhang, L. Zheng, and Z.H. Yao: Rare Met., 2016, pp. 1–8.Google Scholar
  15. 15.
    N. Eliaz, G. Shemesh, and R.M. Latanision: Eng. Failure Analy., 2002, vol. 9, pp. 31–43.CrossRefGoogle Scholar
  16. 16.
    A. Cordier, M. Kleitz, and M.C. Steil: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 1473–79.CrossRefGoogle Scholar
  17. 17.
    X. Wang, S.R. Casolco, G. Xu, and J.E. Garay: Acta Mater., 2007, vol. 55, pp. 3611–22.CrossRefGoogle Scholar
  18. 18.
    R. Orru, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao: Mater. Sci. Eng. R, 2009, vol. 63, pp. 127–287.CrossRefGoogle Scholar
  19. 19.
    B. Salehnasab, E. Poursaeidi, S.A. Mortazavi, and G.H. Farokhian: Eng. Failure Analy., 2016, vol. 60, pp. 316–25.CrossRefGoogle Scholar
  20. 20.
    W. Wang and C. Zhou: Corr. Sci., 2013, vol. 74, pp. 345–52.CrossRefGoogle Scholar
  21. 21.
    M.M. Krolikowska and E. Godlewska: Corr. Sci., 2017, vol. 115, pp. 18–29.CrossRefGoogle Scholar
  22. 22.
    Y. Qıan, X. Li, M. Li, J. Xu, and B. Lu: Trans. Nonferrous Met. Soc. China, 2017, vol. 27, pp. 954–61.CrossRefGoogle Scholar
  23. 23.
    S.Y. Park, D.Y. Seo, S.W. Kim, S.E. Kim, and J.K. Hong: Intermetallics, 2016, vol. 74, pp. 8–14.CrossRefGoogle Scholar
  24. 24.
    T. Gheno, M.Z. Azar, A.H. Heuer, and B. Gleeson: Corr. Sci., 2015, vol. 101, pp. 32–46.CrossRefGoogle Scholar
  25. 25.
    S.C. Huang and E.L. Hall: Metall. Trans. A, 1991, vol. 22A, pp. 2619–27.CrossRefGoogle Scholar
  26. 26.
    D. Pilone, F. Felli, and A. Brotzu: Intermetallics, 2013, vol. 43, pp. 131–37.CrossRefGoogle Scholar
  27. 27.
    Z. Tang, F. Wang, and W. Wu: Oxid. Met., 1999, vol. 51(314), pp. 235–50.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Technology Faculty, Department of Metallurgy and Materials EngineeringSakarya UniversitySakaryaTurkey

Personalised recommendations