Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2139–2150 | Cite as

Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters

  • Pankaj Sahlot
  • Kaushal Jha
  • G. K. Dey
  • Amit Arora
Article
  • 258 Downloads

Abstract

Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.

Notes

Acknowledgments

The authors would like to acknowledge the Board for Research in Nuclear Sciences (BRNS) (Project number 36(2)/20/02/2014-BRNS/). Authors are also thankful to Shri U D Malshe, Head, Engineering Design & Development Division, and Dr. R. Balasubramaniam, Precision Engineering Division for their support to use the research facilities available at BARC.

References

  1. 1.
    Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39, pp. 642–58.CrossRefGoogle Scholar
  2. 2.
    R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R Reports, 2005, vol. 50, pp. 1–78.CrossRefGoogle Scholar
  3. 3.
    B. Thompson and S.S. Babu: Weld. J., 2010, vol. 89, pp. 256–61.Google Scholar
  4. 4.
    S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki: Metall. Mater. Trans. A, 2009, vol. 40, pp. 625–36.CrossRefGoogle Scholar
  5. 5.
    A.L. Pilchak, W. Tang, H. Sahiner, A.P. Reynolds, and J.C. Williams: Metall. Mater. Trans. A, 2011, vol. 42, pp. 745–62.CrossRefGoogle Scholar
  6. 6.
    R. Rai, A. De, H.K.D.H. Bhadeshia, and T. DebRoy: Sci. Technol. Weld. Join., 2011, vol. 16, pp. 325–42.CrossRefGoogle Scholar
  7. 7.
    A.F. Hasan, C.J. Bennett, P.H. Shipway, S. Cater, and J. Martin: J. Mater. Process. Technol., 2017, vol. 241, pp. 129–40.CrossRefGoogle Scholar
  8. 8.
    S. Hanke, G.V.B. Lemos, L. Bergmann, D. Martinazzi, J.F. dos Santos, and T.R. Strohaecker: Wear, 2017, vol. 376–377, pp. 403–8.CrossRefGoogle Scholar
  9. 9.
    R.S. Mishra and M.W. Mahoney: ASM Int., 2007, pp. 1–368.Google Scholar
  10. 10.
    J. Wang, J. Su, R.S. Mishra, R. Xu, and J.A. Baumann: Wear, 2014, vol. 321, pp. 25–32.CrossRefGoogle Scholar
  11. 11.
    R.A. Prado, L.E. Murr, D.J. Shindo, and K.F. Soto: Scr. Mater., 2001, vol. 45, pp. 75–80.CrossRefGoogle Scholar
  12. 12.
    D. Choi, C. Lee, B. Ahn, and J. Choi: Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 931–6.CrossRefGoogle Scholar
  13. 13.
    M.P. Miles, C.S. Ridges, Y. Hovanski, J. Peterson, M.L. Santella, and R. Steel: Sci. Technol. Weld. Join., 2011, vol. 16, pp. 642–7.CrossRefGoogle Scholar
  14. 14.
    R. Nandan, G.G. Roy, T.J. Lienert, and T. Debroy: Acta Mater., 2007, vol. 55, pp. 883–95.CrossRefGoogle Scholar
  15. 15.
    M. Mehta, A. Arora, A. De, and T. DebRoy: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2716–22.CrossRefGoogle Scholar
  16. 16.
    A. Pradeep and S. Muthukumaran: Int. J. Adv. Manuf. Technol., 2016, vol. 84, pp. 1153–62.Google Scholar
  17. 17.
    A. Fall, M. Fesharaki, A. Khodabandeh, and M. Jahazi: Metals (Basel)., 2016, vol. 6, pp. 1–12.CrossRefGoogle Scholar
  18. 18.
    A.H. Feng and Z.Y. Ma: Scr. Mater., 2007, vol. 57, pp. 1113–6.CrossRefGoogle Scholar
  19. 19.
    A.R. Nasresfahani, A.R. Soltanipur, K. Farmanesh, and A. Ghasemi: Mater. Sci. Technol., 2016, vol. 33, pp. 583–91.CrossRefGoogle Scholar
  20. 20.
    D.J. Shindo, A.R. Rivera, and L.E. Murr: J. Mater. Sci., 2002, vol. 7, pp. 4999–5005.CrossRefGoogle Scholar
  21. 21.
    G.J. Fernandez and L.E. Murr: Mater. Charact., 2004, vol. 52, pp. 65–75.CrossRefGoogle Scholar
  22. 22.
    Prado, L. Murr, K. Soto, and J. McClure: Mater. Sci. Eng. A, 2003, vol. 349, pp. 156–65.CrossRefGoogle Scholar
  23. 23.
    Y.S. Sato, M. Miyake, S. Susukida, H. Kokawa, T. Omori, and K. Ishida: in Friction Stir Welding Symposium and Processing VIII, John Wiley & Sons, 2015, pp. 39–46.Google Scholar
  24. 24.
    T.J. Prater, A.M. Strauss, G.E. Cook, B.T. Gibson, and C.D. Cox: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3757–64.CrossRefGoogle Scholar
  25. 25.
    S.J. Barnes, A.R. Bhatti, A. Steuwer, R. Johnson, J. Altenkirch, and P.J. Withers: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2342–55.CrossRefGoogle Scholar
  26. 26.
    T. Prater, A.M. Strauss, G.E. Cook, C. Machemehl, P. Sutton, and C. Cox: J. Manuf. Technol. Res., 2010, vol. 2, pp. 45–57.Google Scholar
  27. 27.
    H.J. Liu, J.C. Feng, H. Fujii, and K. Nogi: Int. J. Mach. Tools Manuf., 2005, vol. 45, pp. 1635–9.CrossRefGoogle Scholar
  28. 28.
    W. Gan, Z.T. Li, and S. Khurana: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 610–3.CrossRefGoogle Scholar
  29. 29.
    B. Gibson, G. Cook, T. Prater, W. Longhurst, A. M. Strauss, and C.D. Cox: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2011, vol. 225, pp. 1293–1303.Google Scholar
  30. 30.
    T. Nakazawa, K. Tanaka, K. Sakairi, Y.S. Sato, H. Kokawa, T. Omori, K. Ishida, and S. Hirano: in 11th Friction stir welding symposium, vol. 1, The Welding Institute, 2016, pp. 4–9.Google Scholar
  31. 31.
    K.R. Seighalani, M.K.B. Givi, A.M. Nasiri, and P. Bahemmat: J. Mater. Eng. Perform., 2010, vol. 19, pp. 955–62.CrossRefGoogle Scholar
  32. 32.
    M. Ghosh, K. Kumar, S.V. Kailas, and a. K. Ray: Mater. Des., 2010, vol. 31, pp. 3033–7.CrossRefGoogle Scholar
  33. 33.
    A. Steuwer, S.J. Barnes, J. Altenkirch, R. Johnson, and P.J. Withers: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2356–65.CrossRefGoogle Scholar
  34. 34.
    K. Surekha and A. Els-Botes: Trans. Indian Inst. Met., 2012, vol. 65, pp. 259–64.CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano: Mater. Sci. Eng. A, 2008, vol. 488, pp. 25–30.CrossRefGoogle Scholar
  36. 36.
    T. Weinberger, N. Enzinger, and H. Cerjak: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 210–5.CrossRefGoogle Scholar
  37. 37.
    A. Feng, B. Xiao, and Z. Ma: Compos. Sci. Technol., 2008, vol. 68, pp. 2141–8.CrossRefGoogle Scholar
  38. 38.
    J.F. Archard: J. Appl. Phys., 1953, vol. 24, pp. 981–8.CrossRefGoogle Scholar
  39. 39.
    J.F. Archard: J. Appl. Phys., 1961, vol. 32, p. 1420.CrossRefGoogle Scholar
  40. 40.
    J.T. Burwell and C.D. Strang: J. Appl. Phys., 1952, vol. 23, pp. 18–28.CrossRefGoogle Scholar
  41. 41.
    P. Sahlot, K. Jha, G.K. Dey, and A. Arora: Wear, 2017, vol. 378, pp. 82–9.CrossRefGoogle Scholar
  42. 42.
    L. Commin, M. Dumont, J.E. Masse, and L. Barrallier: Acta Mater., 2009, vol. 57, pp. 326–34.CrossRefGoogle Scholar
  43. 43.
    R.W. Fonda, J.F. Bingert, and K.J. Colligan: Scr. Mater., 2004, vol. 51, pp. 243–8.CrossRefGoogle Scholar
  44. 44.
    E. Rabinowicz: Proc. Phys. Soc. Sect. B, 1953, vol. 66, pp. 929–36.CrossRefGoogle Scholar
  45. 45.
    S. Abachi, M. Akkök, and M. İlhan Gökler: Tribol. Int., 2010, vol. 43, pp. 467–73.CrossRefGoogle Scholar
  46. 46.
    J. Andersson, A. Almqvist, and R. Larsson: Wear, 2011, vol. 271, pp. 2947–52.CrossRefGoogle Scholar
  47. 47.
    J. Schmale, A. Fehrenbacher, A. Shrivastava, and F.E. Pfefferkorn: Measurement, 2016, vol. 88, pp. 331–42.CrossRefGoogle Scholar
  48. 48.
    A. Arora, M. Mehta, A. De, and T. DebRoy: Int. J. Adv. Manuf. Technol., 2012, vol. 61, pp. 911–20.CrossRefGoogle Scholar
  49. 49.
    W. Tang, X. Guo, J.C. McCLURE, L.E. Murr, and A. Nunes: J. Mater. Process. Manuf. Sci., 1998, 7, vol. 7.Google Scholar
  50. 50.
    A. Arora, R. Nandan, A. Reynolds, and T. DebRoy: Scr. Mater., 2009, vol. 60, pp. 13–6.CrossRefGoogle Scholar
  51. 51.
    A. Arora, T. Debroy, and H.K.D.H. Bhadeshia: Acta Mater., 2011, vol. 59, pp. 2020–8.CrossRefGoogle Scholar
  52. 52.
    R. Nandan, G. Roy, and T. Debroy: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1247–59.CrossRefGoogle Scholar
  53. 53.
    R. Nandan, T. Debroy, and H. Bhadeshia: Prog. Mater. Sci., 2008, vol. 53, pp. 980–1023.CrossRefGoogle Scholar
  54. 54.
    M. Mahoney and W. Bingel: Tool Development for Friction Stir Welding, Rockwell Scientific Co, internal report, Thousand Oaks, CA, 2002.Google Scholar
  55. 55.
    O. Lorrain, V. Favier, H. Zahrouni, and D. Lawrjaniec: J. Mater. Process. Technol., 2010, vol. 210, pp. 603–9.CrossRefGoogle Scholar
  56. 56.
    L. Fratini, G. Buffa, D. Palmeri, J. Hua, and R. Shivpuri: J. Eng. Mater. Technol., 2006, vol. 128, pp. 428–35.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Pankaj Sahlot
    • 1
  • Kaushal Jha
    • 2
  • G. K. Dey
    • 3
  • Amit Arora
    • 1
  1. 1.Advanced Materials Processing Research GroupMaterials Science and Engineering, Indian Institute of Technology GandhinagarGandhinagarIndia
  2. 2.Engineering Design& Development DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Material Science DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations