Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 1986–1991 | Cite as

α″ Martensite and Amorphous Phase Transformation Mechanism in TiNbTaZr Alloy Incorporated with TiO2 Particles During Friction Stir Processing

  • Ruoshi Ran
  • Yiwei Liu
  • Liqiang Wang
  • Eryi Lu
  • Lechun Xie
  • Weijie Lu
  • Kuaishe Wang
  • Lai-Chang Zhang


This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal–amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.


The authors would like to acknowledge the financial support provided by National Science Foundation under Grant Nos. 51302168, 51674167, 973 Program under Grant No. 2014CB046701, Medical Engineering Cross Research Foundation of Shanghai Jiao Tong University under Grant No. YG2017ZD06.


  1. 1.
    L. Wang, L. Xie, Y. Lv, L.C. Zhang, L. Chen, Q. Meng: Acta Mater., 2017, vol. 31, pp. 499-510.CrossRefGoogle Scholar
  2. 2.
    L. Wang, W. Lu, J. Qin, F. Zhang, D. Zhang: Mater. Charact., 2010, vol. 61, pp. 535-541.CrossRefGoogle Scholar
  3. 3.
    F. Ma, T. Wang, P. Liu, W. Li, X. Liu: Mater. Sci. Eng. A, 2016, vol. 654, pp. 352-358.CrossRefGoogle Scholar
  4. 4.
    S.E. Haghighi, H.B. Lu, G.Y. Jian, G.H. Cao, D. Habibi, L.C. Zhang: Mater. Des., 2015, vol. 76, pp. 47–54.CrossRefGoogle Scholar
  5. 5.
    L.C. Zhang, H. Attar: Adv. Eng. Mater., 2016, vol. 18, pp. 463–475.CrossRefGoogle Scholar
  6. 6.
    M. Geetha, A. Singh, R. Asokamani, A. Gogia: Prog. Mater. Sci., 2009, vol. 54, pp. 397–425.CrossRefGoogle Scholar
  7. 7.
    E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme: Biomaterials, 2004, vol. 25, pp. 5705–5713.CrossRefGoogle Scholar
  8. 8.
    E.G. Obbard, Y.L. Hao, T. Akahori, R.J. Talling, M. Niinomi, D. Dye, R. Yang: Acta Mater., 2010, vol. 58, pp. 3557-3567.CrossRefGoogle Scholar
  9. 9.
    R.J. Talling, R.J. Dashwood, M. Jackson, D. Dye: Acta Mater., 2009, vol. 57, pp. 1188-1198.CrossRefGoogle Scholar
  10. 10.
    S. Yoriya, A. Chumphu, P. Pookmanee, W. Laithong, S. Thepa, R. Songprakorp: Materials, 2016, vol. 9, 808.CrossRefGoogle Scholar
  11. 11.
    B. Jalvo, M. Faraldos, A. Bahamonde, R. Rosal: J. Hazard. Mater., 2017, vol. 340, pp. 160-170.CrossRefGoogle Scholar
  12. 12.
    C. Chai, J. Lee, Y. Lee, S. Na, J. Park: LWT - Food Sci. Technol., 2014, Vol. 55, pp. 104-109.CrossRefGoogle Scholar
  13. 13.
    C. Pokhum, D. Viboonratanasri, C. Chawengkijwanich: J. Photochem. Photobiol. B, 2017, vol. 176, pp. 17-24.CrossRefGoogle Scholar
  14. 14.
    T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma: Science, 2003, vol. 300, pp. 464-467.CrossRefGoogle Scholar
  15. 15.
    M. Besse, P. Castany, T. Gloriant: Acta Mater., 2011, vol. 59, pp. 5982-5988.CrossRefGoogle Scholar
  16. 16.
    L.S. Wei, H.Y. Kim, T. Koyano, S. Miyazaki: Scr. Mater., 2016, vol. 123, pp. 55-58.CrossRefGoogle Scholar
  17. 17.
    Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, D. Zhang: Mater. Des., 2011, vol. 32, pp. 2934-2939.CrossRefGoogle Scholar
  18. 18.
    G.A. Crawford, N. Chawla, J. Ringnalda: J. Mater. Res., 2009, vol. 24, pp. 1683-1687.CrossRefGoogle Scholar
  19. 19.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes: International Patent Application No. PCT/GB92/02203, 1991.Google Scholar
  20. 20.
    R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee: Scripta Mater., 1999, vol. 42, pp. 163-168.CrossRefGoogle Scholar
  21. 21.
    Z.H. Ding, C.J. Zhang, L.C. Xie, L.C. Zhang, L.Q. Wang, W.J. Lu: Metall. Mater. Trans. A, 2016, vol. 47, pp. 5675-5679.CrossRefGoogle Scholar
  22. 22.
    C.Y. Zhu, Y.T. Lv, C. Qian, H.X. Qian, T. Jiao, L.Q. Wang, F.Q. Zhang: Sci. Rep., 2016, vol. 6, 38875. Scholar
  23. 23.
    A. Shamsipur, S.F. Kashani-Bozorg, A. Zarei-Hanzaki: Surf. Coat. Technol., 2011, vol. 206, pp. 1372–1381.CrossRefGoogle Scholar
  24. 24.
    B. Li, Y. Shen, W. Hu, L. Luo: Surf. Coat. Technol., 2014, vol. 239, pp. 160–170.CrossRefGoogle Scholar
  25. 25.
    L. Wang, J. Qu, L. Chen, Q. Meng, L.C. Zhang, J. Qin, D. Zhang, W. Lu: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4813–4818.CrossRefGoogle Scholar
  26. 26.
    D. Raabe, S. Ohsaki, K. Hono: Acta Mater., 2009, vol. 57, pp. 5254-5263.CrossRefGoogle Scholar
  27. 27.
    C. Xiong, L. Yao, B. Yuan, W. Qu, Y. Li: Mater. Sci. Eng. A, 2016, vol. 658, pp. 28-32.CrossRefGoogle Scholar
  28. 28.
    E.G. Obbard, Y.L. Hao, R.J. Talling, S.J. Li, Y.W. Zhang, D. Dye, R. Yang: Acta Mater., 2011, vol. 59, pp. 112-125.CrossRefGoogle Scholar
  29. 29.
    V. C. Gudla, F. Jensen, A. Simar, R. Shabadi, R. Ambat: Appl. Surf. Sci., 2015, vol. 324, pp. 554-562.CrossRefGoogle Scholar
  30. 30.
    X.Y. Zhang, Y.Q. Zhao, C.G. Bai: Titanium alloys and their application, Beijing: Chemical Industry Press, 2005, pp. 25-26.Google Scholar
  31. 31.
    J.L. Brimhall, H.E. Kissinger, L.A. Charlot: Radiat. Eff., 1982, vol. 77, pp. 273-293.CrossRefGoogle Scholar
  32. 32.
    D.R. Sahoo, I. Szlufarska, D. Morgan, N. Swaminathan: Nucl. Instrum. Methods Phys. Res. Sect. B, 2018, vol. 414, pp.45-60.CrossRefGoogle Scholar
  33. 33.
    M. Ilatovskaia, G. Savinykh, O. Fabrichnaya. J. Phase Equilib. Diffus., 2017, vol. 38, pp.175–184.CrossRefGoogle Scholar
  34. 34.
    G.R. Cui, Z.Y. Ma, S.X. Li: Acta Mater., 2009, vol. 57, pp. 5718-5729.CrossRefGoogle Scholar
  35. 35.
    A.P. Reynolds, E. Hood, W. Tang: Scripta Mater., 2005, vol. 52, pp. 491-494.CrossRefGoogle Scholar
  36. 36.
    H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi : Mater. Sci. Eng. A, 2006, vol. 429, pp. 50-57.CrossRefGoogle Scholar
  37. 37.
    J. Liu, C. Chen, Q. Feng, X. Fang, H. Wang, F. Liu, J. Lu, D. Raabe : Mater. Sci. Eng. A, 2017, vol. 703, pp. 236-243.CrossRefGoogle Scholar
  38. 38.
    D.A. Porter, K.E. Easterling, M. Sherif: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, 2009.Google Scholar
  39. 39.
    W.H. Gao, X.Y. Yi, X.L. Meng, G. Song, W. Cai, L.C. Zhao: J. Mater. Sci. Technol., 2017, vol. 33, pp. 276-280.CrossRefGoogle Scholar
  40. 40.
    G.B. Olson, M. Cohen: Metall. Mater. Trans. A, 1976, vol. 7, pp. 1905-1914.Google Scholar
  41. 41.
    G.B. Olson, M. Cohen: Metall. Mater. Trans. A, 1976, vol. 7, pp. 1897-1904.Google Scholar
  42. 42.
    J. Wang, R.G. Hoagland, J.P. Hirth, A. Misra: Acta Mater., 2008, vol. 56, pp. 5685-5693.CrossRefGoogle Scholar
  43. 43.
    J. Wang, R.G. Hoagland, J.P. Hirth, A. Misra, Acta Mater., 2008, vol. 56, pp. 3109-3119.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Ruoshi Ran
    • 1
  • Yiwei Liu
    • 1
  • Liqiang Wang
    • 1
  • Eryi Lu
    • 2
  • Lechun Xie
    • 3
  • Weijie Lu
    • 1
  • Kuaishe Wang
    • 4
  • Lai-Chang Zhang
    • 5
  1. 1.State Key Laboratory of Metal Matrix Composites, School of Material Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Renji HospitalShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Hubei Key Laboratory of Advanced Technology for Automotive ComponentsWuhan University of TechnologyWuhanChina
  4. 4.School of Metallurgical EngineeringXi’an University of Architecture and TechnologyXi’anChina
  5. 5.School of EngineeringEdith Cowan UniversityPerthAustralia

Personalised recommendations