Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2551–2560 | Cite as

Application of Precipitate Free Zone Growth Kinetics to the β-Phase Depletion Behavior in a CoNiCrAlY Coating Alloy: An Analytical Approach

Article
  • 256 Downloads

Abstract

This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/β interface, and the Al concentration at γ/γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.

Notes

Acknowledgments

The author would like to thank Professor D.G. McCartney, Dr. K.T. Voisey, and Professor J.R. Nicholls for helpful discussions. The author would like to acknowledge Faculty of Engineering, University of Nottingham for provision of laboratory facilities. This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ18E010002.

References

  1. 1.
    J.R. Nicholls, JOM, 2000, vol. 52, pp. 28-35.CrossRefGoogle Scholar
  2. 2.
    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier and F.S. Pettit, Prog. Mater. Sci., 2001, vol. 46, pp. 505-553.CrossRefGoogle Scholar
  3. 3.
    C.U. Hardwicke and Y.-C. Lau, J. Therm. Spray Technol., 2013, vol. 22, pp. 564-576.CrossRefGoogle Scholar
  4. 4.
    H. Chen and T.H. Hyde, Mater. Sci. Eng. A, 2017, vol. 680, pp. 203-209.CrossRefGoogle Scholar
  5. 5.
    S. Li, X. Yang, H. Qi, G. Xu and D. Shi, Mater. Sci. Eng. A, 2016, vol. 678, pp. 57-64.CrossRefGoogle Scholar
  6. 6.
    T. Sadowski and P. Golewski, Comput. Mater. Sci., 2012, vol. 64, pp. 285-288.CrossRefGoogle Scholar
  7. 7.
    H. Chen, G.A. Jackson and W. Sun, J. Therm. Spray Technol., 2017, vol. 26, pp. 1222-1238.CrossRefGoogle Scholar
  8. 8.
    H. Chen and T. Barman, Comput. Mater. Sci., 2018, vol. 147, pp. 103-14.CrossRefGoogle Scholar
  9. 9.
    A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser and W.J. Quadakkers, Surf. Coat. Technol., 2006, vol. 201, pp. 3824-3828.CrossRefGoogle Scholar
  10. 10.
    X. Yang, S. Li and H. Qi, Int. J. Fatigue, 2015, vol. 75, pp. 126-134.CrossRefGoogle Scholar
  11. 11.
    H. Chen, T.H. Hyde, K.T. Voisey and D.G. McCartney, Mater. Sci. Eng. A, 2013, vol. 585, pp. 205-13.CrossRefGoogle Scholar
  12. 12.
    X. Gong, H. Peng, Y. Ma, H. Guo and S. Gong, J. Alloys Compd., 2016, vol. 672, pp. 36-44.CrossRefGoogle Scholar
  13. 13.
    H. Chen: Ph.D. Thesis, University of Nottingham, 2015.Google Scholar
  14. 14.
    H. Chen, T.H. Hyde, K.T. Voisey and D.G. McCartney, Proc. IMechE Part L: J. Mater.: Des. Appl., 2018, vol. 232, pp. 242–49.Google Scholar
  15. 15.
    M. Tahari, M. shamanian and M. salehi, J. Alloys Compd., 2015, vol. 646, pp. 372-379.CrossRefGoogle Scholar
  16. 16.
    P. Puetz, X. Huang, R.S. Lima, Q. Yang and L. Zhao, Surf. Coat. Technol., 2010, vol. 205, pp. 647-657.CrossRefGoogle Scholar
  17. 17.
    T. Mori, S. Kuroda, H. Murakami, H. Katanoda, Y. Sakamoto and S. Newman, Surf. Coat. Technol., 2013, vol. 221, pp. 59-69.CrossRefGoogle Scholar
  18. 18.
    R.D. Jackson, M.P. Taylor, H.E. Evans and X.-H. Li, Oxid. Met., 2011, vol. 76, pp. 259-271.CrossRefGoogle Scholar
  19. 19.
    H. Chen, Mater. Charact., 2018, vol. 136, pp. 444-451.CrossRefGoogle Scholar
  20. 20.
    P. Poza and P.S. Grant, Surf. Coat. Technol., 2006, vol. 201, pp. 2887-2896.CrossRefGoogle Scholar
  21. 21.
    D. Naumenko, V. Shemet, L. Singheiser and W. Quadakkers, J. Mater. Sci., 2009, vol. 44, pp. 1687-1703.CrossRefGoogle Scholar
  22. 22.
    T. Koomparkping, S. Damrongrat and P. Niranatlumpong, J. Therm. Spray Technol., 2005, vol. 14, pp. 264-267.CrossRefGoogle Scholar
  23. 23.
    D.R.G. Achar, R. Munoz-Arroyo, L. Singheiser and W.J. Quadakkers, Surf. Coat. Technol., 2004, vol. 187, pp. 272-283.CrossRefGoogle Scholar
  24. 24.
    Y.Z. Liu, X.B. Hu, S.J. Zheng, Y.L. Zhu, H. Wei and X.L. Ma, Mater. Des., 2015, vol. 80, pp. 63-69.CrossRefGoogle Scholar
  25. 25.
    M. Elsaß, M. Frommherz, A. Scholz and M. Oechsner, Surf. Coat. Technol., 2016, vol. 307, pp. 565-573.CrossRefGoogle Scholar
  26. 26.
    R.A. Mahesh, R. Jayaganthan and S. Prakash, J. Alloys Compd., 2009, vol. 468, pp. 392-405.CrossRefGoogle Scholar
  27. 27.
    H. Peng, H. Guo, J. He and S. Gong, J. Alloys Compd., 2010, vol. 502, pp. 411-416.CrossRefGoogle Scholar
  28. 28.
    H.E. Evans and M.P. Taylor, Oxid. Met., 2001, vol. 55, pp. 17-34.CrossRefGoogle Scholar
  29. 29.
    J. Reinoso, M. Paggi and R. Rolfes, Comput. Mater. Sci., 2016, vol. 116, pp. 82-95.CrossRefGoogle Scholar
  30. 30.
    M. Bäker, Comput. Mater. Sci., 2012, vol. 64, pp. 79-83.CrossRefGoogle Scholar
  31. 31.
    P. Seiler, M. Bäker and J. Rösler, Comput. Mater. Sci., 2013, vol. 80, pp. 27-34.CrossRefGoogle Scholar
  32. 32.
    C. Bumgardner, B. Croom and X. Li, Acta Mater., 2017, vol. 128, pp. 54-63.CrossRefGoogle Scholar
  33. 33.
    E.Y. Lee, D.M. Chartier, R.R. Biederman and R.D. Sisson, Surf. Coat. Technol., 1987, vol. 32, pp. 19-39.CrossRefGoogle Scholar
  34. 34.
    S.M. Meier, D.M. Nissley, and K.D. Sheffler: Report No. 18911/NAS3-23944, Lewis Research Center, 1991.Google Scholar
  35. 35.
    J.A. Nesbitt: Report No. NASA/TM-2000-209271, Glenn Research Center, 2000.Google Scholar
  36. 36.
    M.S.A. Karunaratne, S.L. Ogden, S.D. Kenny and R.C. Thomson, Mater. Sci. Technol., 2009, vol. 25, pp. 287-299.CrossRefGoogle Scholar
  37. 37.
    M.S.A. Karunaratne, I. Di Martino, S.L. Ogden, D.L. Oates and R.C. Thomson, Metall. Mater. Trans. A, 2011, vol. 43, pp. 774-788.Google Scholar
  38. 38.
    R. Eriksson, K. Yuan, X.-H. Li, and R. LinPeng: Surf. Coat. Technol., 2014, vol. 253, pp. 27-37.CrossRefGoogle Scholar
  39. 39.
    R. Pillai, W.G. Sloof, A. Chyrkin, L. Singheiser and W.J. Quadakkers, Mater. High Temp., 2015, vol. 32, pp. 57-67.CrossRefGoogle Scholar
  40. 40.
    K. Yuan, R. Lin Peng, X.-H. Li, S. Johansson and Y.-D. Wang, Surf. Coat. Technol., 2015, vol. 261, pp. 86-101.CrossRefGoogle Scholar
  41. 41.
    H. Chen, G.A. Jackson, K.T. Voisey and D.G. McCartney, Surf. Coat. Technol., 2016, vol. 291, pp. 34-42.CrossRefGoogle Scholar
  42. 42.
    L. Wang, D.C. Li, J.S. Yang, F. Shao, X.H. Zhong, H.Y. Zhao, K. Yang, S.Y. Tao and Y. Wang, J. Eur. Ceram. Soc., 2016, vol. 36, pp. 1313-1331.CrossRefGoogle Scholar
  43. 43.
    H. Chen and D.G. McCartney, Surf. Coat. Technol., 2017, vol. 313, pp. 107-114.CrossRefGoogle Scholar
  44. 44.
    B.-Y. Zhang, G.-J. Yang, C.-X. Li and C.-J. Li, Appl. Surf. Sci., 2017, vol. 406, pp. 99-109.CrossRefGoogle Scholar
  45. 45.
    D. Seo, K. Ogawa, Y. Suzuki, K. Ichimura, T. Shoji and S. Murata, Appl. Surf. Sci., 2008, vol. 255, pp. 2581-2590.CrossRefGoogle Scholar
  46. 46.
    C. Wagner, J. Electrochem. Soc., 1952, vol. 99, pp. 369-380.CrossRefGoogle Scholar
  47. 47.
    G. Wahl, Thin Solid Films, 1983, vol. 107, pp. 417-426.CrossRefGoogle Scholar
  48. 48.
    F. Gesmundo and B. Gleeson, Oxid. Met., 1995, vol. 44, pp. 211-237.CrossRefGoogle Scholar
  49. 49.
    P. Carter, B. Gleeson and D.J. Young, Acta Mater., 1996, vol. 44, pp. 4033-4038.CrossRefGoogle Scholar
  50. 50.
    H. Chen, Y.Q. Si and D.G. McCartney, J. Alloys Compd., 2017, vol. 704, pp. 359-365.CrossRefGoogle Scholar
  51. 51.
    S. Saeidi, K.T. Voisey and D.G. McCartney, J. Therm. Spray Technol., 2011, vol. 20, pp. 1231–1243.CrossRefGoogle Scholar
  52. 52.
    S. Saeidi, K.T. Voisey and D.G. McCartney, J. Therm. Spray Technol., 2009, vol. 18, pp. 209-216.CrossRefGoogle Scholar
  53. 53.
    D. Salehi Doolabi, M.R. Rahimipour, M. Alizadeh, S. Pouladi, S.M.M. Hadavi and M.R. Vaezi, Vacuum, 2017, vol. 135, pp. 22-33.CrossRefGoogle Scholar
  54. 54.
    C.A. Schneider, W.S. Rasband and K.W. Eliceiri, Nat. Methods, 2012, vol. 9, pp. 671-675.CrossRefGoogle Scholar
  55. 55.
    L. Lelait, S. Alpérine and R. Mévrel, J. Mater. Sci., 1992, vol. 27, pp. 5-12.CrossRefGoogle Scholar
  56. 56.
    A. Paul, A.A. Kodentsov and F.J.J. van Loo, J. Alloys Compd., 2005, vol. 403, pp. 147-153.CrossRefGoogle Scholar
  57. 57.
    A.J. Campbell, L. Danielson, K. Righter, C.T. Seagle, Y. Wang and V.B. Prakapenka, Earth. Planet. Sci. Lett., 2009, vol. 286, pp. 556-564.CrossRefGoogle Scholar
  58. 58.
    A. Borgenstam, L. Höglund, J. Ågren and A. Engström, J. Phase Equilib., 2000, vol. 21, pp. 269-280.CrossRefGoogle Scholar
  59. 59.
    J.O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Calphad, 2002, vol. 26, pp. 273-312.CrossRefGoogle Scholar
  60. 60.
    N. Saunders: Superalloys 1996, TMS, Warrendale, PA, 1996, p. 101.Google Scholar
  61. 61.
    L.M. Cheng, E.B. Hawbolt and T.R. Meadowcroft, Metall. Mater. Trans. A, 2000, vol. 31, pp. 1907-1916.CrossRefGoogle Scholar
  62. 62.
    P. Krukovsky, V. Kolarik, K. Tadlya, A. Rybnikov, I. Kryukov, N. Mojaiskaya and M. Juez-Lorenzo, Surf. Coat. Technol., 2004, vol. 177-178, pp. 32-36.CrossRefGoogle Scholar
  63. 63.
    T.J. Nijdam and W.G. Sloof, Acta Mater., 2008, vol. 56, pp. 4972-4983.CrossRefGoogle Scholar
  64. 64.
    Y.H. Sohn, J.H. Kim, E.H. Jordan and M. Gell, Surf. Coat. Technol., 2001, vol. 146-147, pp. 70-78.CrossRefGoogle Scholar
  65. 65.
    H. Chen, D.G. McCartney and K.T. Voisey, Mater. High Temp., 2015, vol. 32, pp. 215-220.CrossRefGoogle Scholar
  66. 66.
    P. Niranatlumpong, C.B. Ponton and H.E. Evans, Oxid. Met., 2000, vol. 53, pp. 241-258.CrossRefGoogle Scholar
  67. 67.
    F.J. Belzunce, V. Higuera and S. Poveda, Mater. Sci. Eng. A, 2001, vol. 297, pp. 162-167.CrossRefGoogle Scholar
  68. 68.
    F. Gesmundo, F. Viani and Y. Niu, Oxid. Met., 1996, vol. 45, pp. 51-76.CrossRefGoogle Scholar
  69. 69.
    X. Li, N. Saunders and A.P. Miodownik, Metall. Mater. Trans. A, 2002, vol. 33, pp. 3367-3373.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and EngineeringUniversity of Nottingham Ningbo ChinaNingboChina

Personalised recommendations