Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2324–2339 | Cite as

Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

  • Brent R. Goodlet
  • Leah Mills
  • Ben Bales
  • Marie-Agathe Charpagne
  • Sean P. Murray
  • William C. Lenthe
  • Linda Petzold
  • Tresa M. Pollock
Article

Abstract

Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel \(\gamma -\gamma '\) Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the \(c_{44}\) (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy (A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

Notes

Acknowledgments

This research was funded by the U.S. Air Force Research Laboratory (AFRL) through BAA Contract FA8650-15-M-5208, SBIR Contract FA8650-15-M-5074. Vibrant Corporation provided the RUS measurement equipment and many helpful discussions. This paper was cleared for public release by the AFRL, Case Number 88ABW-2017-6331

References

  1. 1.
    T. M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–374.CrossRefGoogle Scholar
  2. 2.
    D. Miracle: Acta Metall. Mater., 1993, vol. 41, pp. 649–684.CrossRefGoogle Scholar
  3. 3.
    T. M. Pollock: Nat. Mater., 2016, vol. 15, pp. 809–815.CrossRefGoogle Scholar
  4. 4.
    B. P. Bewlay, M. R. Jackson, P. R. Subramanian, and J. C. Zhao: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2043–2052.CrossRefGoogle Scholar
  5. 5.
    J. Lemberg and R. Ritchie: Adv. Mat., 2012, vol. 24, pp. 3445–3480.CrossRefGoogle Scholar
  6. 6.
    J. Perepezko: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 519–542.CrossRefGoogle Scholar
  7. 7.
    M. Holmquist, R. Lundberg, O. Sudre, A. Razzell, L. Molliex, J. Benoit, and J. Adlerborn: J. Eur. Ceram. Soc., 2000, vol. 20, pp. 599–606.CrossRefGoogle Scholar
  8. 8.
    R. Naslain and F. Christin: MRS Bull., 2003, vol. 28, p. 654658.CrossRefGoogle Scholar
  9. 9.
    H. Ohnabe, S. Masaki, M. Onozuka, K. Miyahara, and T. Sasa: Comp. A, 1999, vol. 30, pp. 489–496.CrossRefGoogle Scholar
  10. 10.
    T. M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki: JOM, 2010, vol. 62, pp. 58–63.CrossRefGoogle Scholar
  11. 11.
    M. S. Titus, A. Suzuki, and T. M. Pollock: Scripta Mater., 2012, vol. 66, pp. 574–77.CrossRefGoogle Scholar
  12. 12.
    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90–91.CrossRefGoogle Scholar
  13. 13.
    M. S. Titus, A. Suzuki, and T. M. Pollock: Superalloys 2012, eds. E. Huron, R. Reed, M. Hardy, M. Mills, R. Montero, P. Portella and J. Telesman, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012, pp. 823–32Google Scholar
  14. 14.
    C. Stewart, R. Rhein, A. Suzuki, T. Pollock, and C. Levi: 2016, John Wiley & Sons, Inc., Superalloys, 2016, pp. 991–999.Google Scholar
  15. 15.
    R. W. Jackson, M. S. Titus, M. R. Begley, and T. M. Pollock: Surface Coat. Technol., 2016, vol. 289, pp. 61–68.Google Scholar
  16. 16.
    B. Bales, B. R. Goodlet, W. C. Lenthe, L. Petzold, and T. M. Pollock: J. Acoust. Soc. Am., 2017. 143: 71-83CrossRefGoogle Scholar
  17. 17.
    Stan Development Team: Stan Modeling Language User’s Guide and Reference Manual, Version 2.15.0, 2016.Google Scholar
  18. 18.
    M. S. Titus, Y. M. Eggeler, A. Suzuki, and T. M. Pollock: Acta Mater., 2015, vol. 82, pp. 530–539.CrossRefGoogle Scholar
  19. 19.
    Y. M. Eggeler, M. S. Titus, A. Suzuki, and T. M. Pollock: Acta Mater., 2014, vol. 77, pp. 352–359.CrossRefGoogle Scholar
  20. 20.
    B. C. Wilson, J. A. Hickman, and G. E. Fuchs: JOM, 2003, vol. 55, pp. 35–40.CrossRefGoogle Scholar
  21. 21.
    A. Migliori and J. Sarrao: Resonant ultrasound spectroscopy: applications to physics, materials measurements, and nondestructive evaluation, Wiley-Interscience, New York, 1997.Google Scholar
  22. 22.
    A. Migliori, J. Sarrao, W. M. Visscher, T. Bell, M. Lei, Z. Fisk, and R. Leisure: Phys. B Condens. Matter., 1993, vol. 183, pp. 1–24.CrossRefGoogle Scholar
  23. 23.
    H. H. Demarest: J. Acoust. Soc. Am., 1971, vol. 49, p. 768.CrossRefGoogle Scholar
  24. 24.
    E. Schreiber, O. L. Anderson, and N. Soga: Elastic Constants and Their Measurement, New York : McGraw-Hill, 1973.Google Scholar
  25. 25.
    E. Mochizuki: J. Phys. Earth, 1987, vol. 35, pp. 159–170.CrossRefGoogle Scholar
  26. 26.
    J. Maynard: Phys. Today, 1996, vol. 49, p. 26.CrossRefGoogle Scholar
  27. 27.
    P. S. Spoor: Elastic properties of novel materials using pvdf film and resonance ultrasound spectroscopy: Tech. Rep. ADA328037, Pennsylvania State Univ. Dept. of Physics, 1997.Google Scholar
  28. 28.
    R. G. Leisure and F. A. Willis: J. Phys. Condens. Matter, 1997, vol. 9, pp. 6001–6029.CrossRefGoogle Scholar
  29. 29.
    R. Neal: MCMC using Hamiltonian dynamics. CRC Press, New York, 2011, pp. 113–163Google Scholar
  30. 30.
    W. M. Visscher, A. Migliori, T. M. Bell, and R. A. Reinert: J. Acoust. Soc. Am., 1991, vol. 90, pp. 2154–2162.CrossRefGoogle Scholar
  31. 31.
    D. Rosca, A. Morawiec, and M. D. Graef: Model. Simul. Mater. Sci. Eng., 2014, vol. 22, p. 075013.CrossRefGoogle Scholar
  32. 32.
    M. D. Hoffman and A. Gelman: J. Mach. Learn. Res., 2014, vol. 15, pp. 1593–1623.Google Scholar
  33. 33.
    J. Plesek, R. Kolman, and M. Landa: J. Acoust. Soc. Am., 2004, vol. 116, pp. 282–287.CrossRefGoogle Scholar
  34. 34.
    M. C. Remillieux, T. J. Ulrich, C. Payan, J. Rivière, C. R. Lake, and P.-Y. Le Bas: J. Geophys. Res. Solid Earth, 2015, vol. 120, pp. 4898–4916.CrossRefGoogle Scholar
  35. 35.
    C. Zener: Phys. Rev., 1947, vol. 71, pp. 846–851.CrossRefGoogle Scholar
  36. 36.
    J. Geweke: Am. Econ. Rev., 2007, vol. 97, pp. 60–64.CrossRefGoogle Scholar
  37. 37.
    C. M. Grinstead and J. L. Snell: Introduction to Probability, 2nd edition, American Mathematical Society Providence, , Rhode Island, 2003.Google Scholar
  38. 38.
    D. Higdon, K. Heitmann, E. Lawrence, and S. Habib: Using the Bayesian Framework to Combine Simulations and Physical Observations for Statistical Inference. Wiley, New York 2010, pp. 87–105.Google Scholar
  39. 39.
    P. K. Kitanidis: Bayesian and Geostatistical Approaches to Inverse Problems, chap. 4, John Wiley & Sons, Ltd, 2010, pp. 71–85Google Scholar
  40. 40.
    Stan Development Team: CmdStan Interface User’s Guide, CmdStan Version 2.16.0, 2017.Google Scholar
  41. 41.
    W. K. Hastings: Biometrika, 1970, vol. 57, pp. 97–109.CrossRefGoogle Scholar
  42. 42.
    S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth: Phys. Lett. B, 1987, vol. 195, pp. 216–222.CrossRefGoogle Scholar
  43. 43.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller: J. Chem. Phys., 1953, vol. 21, pp. 1087–1092.CrossRefGoogle Scholar
  44. 44.
    P. Sedlák, H. Seiner, J. Zídek, M. Janovská, and M. Landa: Exp. Mech., 2014, vol. 54, pp. 1073–1085.CrossRefGoogle Scholar
  45. 45.
    J. Schreuer and S. Haussühl: EMU Notes Mineral., 2005, vol. 7, pp. 173–198.Google Scholar
  46. 46.
    A. B. Parsa, P. Wollgramm, H. Buck, C. Somsen, A. Kostka, I. Povstugar, P.-P. Choi, D. Raabe, A. Dlouhy, J. Müller, et al.: Adv. Eng. Mater., 2015, vol. 17, pp. 216–230.CrossRefGoogle Scholar
  47. 47.
    D. Siebörger, H. Knake, and U. Glatzel: Mater. Sci. Eng. A, 2001, vol. 298, pp. 26–33.CrossRefGoogle Scholar
  48. 48.
    T. Ichitsubo, D. Koumoto, M. Hirao, K. Tanaka, M. Osawa, T. Yokokawa, and H. Harada: Acta Mater., 2003, vol. 51, pp. 4863–4869.CrossRefGoogle Scholar
  49. 49.
    B. J. Zadler, J. H. L. Le Rousseau, J. A. Scales, and M. L. Smith: Geophys. J. Int., 2004, vol. 156, pp. 154–169.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Brent R. Goodlet
    • 1
  • Leah Mills
    • 2
  • Ben Bales
    • 3
  • Marie-Agathe Charpagne
    • 1
  • Sean P. Murray
    • 1
  • William C. Lenthe
    • 1
  • Linda Petzold
    • 3
  • Tresa M. Pollock
    • 1
  1. 1.Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.Department of Mechanical EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations