Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2311–2323 | Cite as

Microstructures and Surface Stabilities of {Ni-0.4C-6Ta-xCr, 0 ≤ x ≤ 50 Wt Pct} Cast Alloys at High Temperature

  • Patrice Berthod
Article
  • 84 Downloads

Abstract

Nickel-based cast alloys rich in chromium and reinforced by TaC carbides are potentially very interesting alloys for applications at elevated temperatures. Unfortunately, unlike cobalt-chromium and iron-chromium alloys, it is difficult to obtain exclusively TaC as primary carbides in Ni-Cr alloys. In alloys containing 30 wt pct Cr tantalum, carbides coexist with chromium carbides. The latter tend to weaken the alloy at elevated temperatures because they become rapidly spherical and then quickly lose their reinforcing effect. In this work, we attempted to stabilize TaC as a single carbide phase by testing different chromium contents in the [0, 50 wt pct] range. Six alloys containing 0.4C and 6Ta, weight contents corresponding to equivalent molar contents, were elaborated by foundry, and their as-cast microstructures were characterized. Samples of all alloys were exposed to 1127 °C and 1237 °C for 24 hours to characterize their stabilized microstructures. The surface fractions of chromium carbides and tantalum carbides were measured by image analysis, and their evolutions vs the chromium content were studied. For the chosen C and Ta contents, it appears that obtaining TaC only is possible by decreasing the chromium content to 10 wt pct. At the same time, TaC fractions are unfortunately too low because a large portion of tantalum integrates into the solid solution in the matrix. A second consequence is a critical decrease in oxidation resistance. Other possible methods to stabilize TaC as a single carbide are evocated, such as the simultaneous increase in Ta and decrease in chromium from 30 wt pct Cr.

Notes

Acknowledgments

The author wishes to thank Miss Zohra Himeur, Master’s student in the trainee period who helped him technically in this work.

References

  1. 1.
    [1] M. J. Donachie, S. J. Donachie: Superalloys: A Technical Guide, 2nd ed., ASM International, Materials Park, 2002, pp. 79-90.Google Scholar
  2. 2.
    [2] M. Durand-Charre: The microstructures of Superalloys, CRC Press, Boca Raton, 1997, pp. 10-11.Google Scholar
  3. 3.
    D. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, 2008, pp. 34-37.Google Scholar
  4. 4.
    [4] P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, London, 1988, pp. 370-371.Google Scholar
  5. 5.
    J. Di Martino: Oxidation at High Temperature and Corrosion by the C3 Molten Glass of Superalloys Based on Cobalt. Ph.D. Thesis, Henri Poincaré University, Vandoeuvre-lès-Nancy, 2002, pp. 14–15.Google Scholar
  6. 6.
    S. Michon: Metallurgical and Mechanical Optimization of Cobalt-Based Superalloys for Glass-Forming Uses at 1200°C. Ph.D. Thesis, Henri Poincaré University, Vandoeuvre-lès-Nancy, 2004, pp. 73–78.Google Scholar
  7. 7.
    [7] C. T. Sims, W. C. Hagel: The Superalloys, John Wiley & Sons, New York, 1972, pp. 52-55.Google Scholar
  8. 8.
    [8] E. F. Bradley: Superalloys: A Technical Guide, ASM International, Metals Park, 1988, pp. 39-40.Google Scholar
  9. 9.
    [9] O. Renck, P. Ghosh and R. Pippan: Scripta Materialia, 2017, 137, pp. 60-63.CrossRefGoogle Scholar
  10. 10.
    [10] Z. Wang, Y. Yuan, K. Arshad, J. Wang, Z. Zhou, J. Tang, G.-H. Lu: Fusion Engineering and Design, 2017, 125, pp. 496-502.CrossRefGoogle Scholar
  11. 11.
    [11] Y. Mu, H. Liu, Y. Liu, X. Zhang, Y. Jiang and T. Dong: Journal of Alloys and Compounds, 2017, 714, pp. 668-680.CrossRefGoogle Scholar
  12. 12.
    C. Mathiou, A. Poulia, E. Georgatis, and A.E. Karantzalis: Mater. Chem. Phys., 2017 (in press).Google Scholar
  13. 13.
    [13] X. Feng, J. Zhang, Z. Xia, W. Fu, K. Wu, G. Liu and J. Sun: Materials Letters, 2018, 210, pp. 84-87.CrossRefGoogle Scholar
  14. 14.
    [14] F. Körmann, A. V. Ruban and M. H. F. Sluiter: Materials Research Letters, 2017, 5(1), 35-40.CrossRefGoogle Scholar
  15. 15.
    [15] N. D. Stepanov, N. Y. Yurchenko, S. V. Zherebtsov, M. A. Tikhonovsky and G. A. Salishchev: Materials Letters, 2018, 211, pp. 87-90.CrossRefGoogle Scholar
  16. 16.
    [16] L. Lilensten, J.-P. Couzinié, J. Bourgon, L. Perrière, G. Dirras, F. Prima and I. Guillot: Materials Research Letters, 2017, 5(2), pp. 110-116.CrossRefGoogle Scholar
  17. 17.
    H. Jiang, K. Han, D. Qiao, Y. Lu, Z. Cao, and T. Li: Mater. Chem. Phys., 2017 (in press).Google Scholar
  18. 18.
    [18] Y. T. Xu, Q.-Z. Sha and T.-D. Xia: Zhongguo Youse Jinshu Xuebao, 2016, 26(2), pp. 302-309.Google Scholar
  19. 19.
    [19] Y. Guo, F. Zhong, Y. Yu, S. Li and J. Sha: Journal of Alloys and Compounds, 2017, 710, 725-735.CrossRefGoogle Scholar
  20. 20.
    [20] L. Karge, R. Gilles, D. Mukherji, P. Strunz, P. Beran, M. Hofmann, J. Gavilano, U. Keiderling, O. Dolotko, A. Kriele, A. Neubert, J. Rösler and W. Petry: Acta Materialia, 2017, 132, pp. 354-366.CrossRefGoogle Scholar
  21. 21.
    [21] R. Steinitz: Jet Propulsion, 1955, 25, pp. 326-330.CrossRefGoogle Scholar
  22. 22.
    G. W. Meetham, M. H. Van de Voorde, Materials for High Temperature Engineering Applications, Springer, 2012, p. 83.Google Scholar
  23. 23.
    J. Di Martino, S., L. Aranda, P. Berthod, R. Podor and C. Rapin: Annales de ChimieSciences des Matériaux, 2003, 28 (Suppl. 1), pp. S231-8.Google Scholar
  24. 24.
    [24] P. Berthod, S. Michon, J. Di Martino, S. Mathieu, S. Noël, R. Podor and C. Rapin: Calphad, 2003, 27(3), pp. 279-88.CrossRefGoogle Scholar
  25. 25.
    [25] S. Michon, P. Berthod, L. Aranda, C. Rapin, R. Podor and P. Steinmetz: Calphad, 2003, 27(3), pp. 289-94.CrossRefGoogle Scholar
  26. 26.
    S. Michon, L. Aranda, P. Berthod and P. Steinmetz: La Revue de MétallurgieC.I.T./Science et Génie des Matériaux, 2004, 9, pp. 651-62.CrossRefGoogle Scholar
  27. 27.
    [27] P. Berthod, Y. Hamini, L. Aranda and L. Héricher: Calphad, 2007, 31(3), pp. 351-60.CrossRefGoogle Scholar
  28. 28.
    [28] P. Berthod, L. Aranda, C. Vébert and S. Michon: Calphad, 2004, 28(2), pp. 159-166.CrossRefGoogle Scholar
  29. 29.
    [29] L. Zheng, C. Gu and G. Zhang: Xiyou Jishu Cailiao Yu Gongcheng, 2005, 34(2), pp. 194-198.Google Scholar
  30. 30.
    [30] X. Z. Qin, J. T. Guo, C. Yuan, J. S. Hou and H. Q. Ye: Materials Letters, 2008, 62, pp. 2275-2278.CrossRefGoogle Scholar
  31. 31.
    [31] K. Zhao, Y. H. Ma, and L. H. Lou: Journal of Alloys and Compounds, 2009, 475, pp. 648-651.CrossRefGoogle Scholar
  32. 32.
    [32] L. Zheng, G. Zhang, T. L. Lee, M. J. Gorley, Y. Wang, C. Xiao and Z. Li: Materials & Design, 2014, 21, pp. 61-9.CrossRefGoogle Scholar
  33. 33.
    [33] E. Conrath and P. Berthod: Materials at High Temperature, 2016, 33(2), pp.189-197.CrossRefGoogle Scholar
  34. 34.
    [34] P. Berthod, E. Conrath: Materials Science: An Indian Journal, 2015, 13(11), pp. 347-352.Google Scholar
  35. 35.
    [35] S. R. Shatynski: Oxidation of Metals, 1979, 13(2), pp. 105-118.CrossRefGoogle Scholar
  36. 36.
    [36] Z. Li, H. Mao, M. Selleby: Calphad, 2017, 59, pp. 107-111.CrossRefGoogle Scholar
  37. 37.
    [37] Y. Liu, Y. Jiang, R. Zhou, J. Feng: Journal of Alloys and Compounds, 2014, 582, pp. 500-504.CrossRefGoogle Scholar
  38. 38.
    [38] D. L. Shu, S. G. Tian, N. Tian, J. Xie, Y. Su, Materials Science and Engineering A, 2017, 700, pp. 152- 161.CrossRefGoogle Scholar
  39. 39.
    [39] L. Zhang, H. Liu, X. He, R. Din, X. Qu, M. Qin, Z. Li, G. Zhang, Materials Characterization, 2012, 67, pp. 52-64.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Faculty of Science and TechnologiesUniversity of LorraineVandoeuvre-lès-NancyFrance
  2. 2.CNRS, Institut Jean Lamour (UMR 7198), Department CP2SUniversity of LorraineVandoeuvre-lès-NancyFrance

Personalised recommendations