Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2352–2362 | Cite as

Fabrication of Ternary AgPdAu Alloy Nanoparticles on c-Plane Sapphire by the Systematical Control of Film Thickness and Deposition Sequence

  • Sundar Kunwar
  • Puran Pandey
  • Mao Sui
  • Sushil Bastola
  • Jihoon Lee
Article
  • 84 Downloads

Abstract

In this work, a systematic study on the fabrication of ternary AgPdAu alloy nanoparticles (NPs) on c-plane sapphire (0001) is presented and the corresponding structural and optical characteristics are demonstrated. The metallic trilayers of various thicknesses and deposition orders are annealed in a controlled manner (400 °C to 900 °C) to induce the solid-state dewetting that yields the various structural configurations of AgPdAu alloy NPs. The dewetting of relatively thicker trilayers (15 nm) is gradually progressed with void nucleation, growth, and coalescence, isolated NP formation, and shape transformation, along with the temperature control. For 6 nm thickness, owing to the sufficient dewetting of trilayers along with enhanced diffusion, dense and small spherical alloy NPs are fabricated. Depending on the specific growth condition, the surface diffusion and interdiffusion of metal atoms, surface and interface energy minimization, Rayleigh instability, and equilibrium configuration are correlated to describe the fabrication of ternary alloy NPs. Ternary alloy NPs exhibit morphology-dependent ultraviolet–visible–near infrared (UV–VIS–NIR) reflectance properties such as the inverse relationship of average reflectance with the surface coverage, absorption enhancement in specific regions, and reflectance maxima in UV and NIR regions. In addition, Raman spectra depict the six active phonon modes of sapphires and their intensity and position modulation by the alloy NPs.

Notes

Acknowledgments

Financial support from the National Research Foundation of Korea (Grant Nos. 2011-0030079 and 2016R1A1A1A05005009) and, in part, by the research grant of Kwangwoon University in 2018 is gratefully acknowledged.

Supplementary material

11661_2018_4573_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (DOCX 4636 kb)

References

  1. 1.
    F.A. Nugroho, B. Iandolo, J.B. Wagner, and C. Langhammer: ACS Nano, 2016, vol. 10 (2), pp. 2871–79.CrossRefGoogle Scholar
  2. 2.
    G. Darabdhara, M.A. Amin, G.A. Mersal, E.M. Ahmed, M.R. Das, M.B. Zakaria, V. Malgras, S.M. Alshehri, Y. Yamauchi, S. Szunerits, and R. Boukherroub: J. Mater. Chem. A, 2015, vol. 3 (40), pp. 20254–20266.CrossRefGoogle Scholar
  3. 3.
    C.M. Olmos, L.E. Chinchilla, E.G. Rodrigues, J.J. Delgado, A.B. Hungría, G. Blanco, M.F. Pereira, J.J. Órfão, J.J. Calvino, and X. Chen: Appl. Catal. B-Environ., 2016, vol. 197, pp. 222–35.CrossRefGoogle Scholar
  4. 4.
    D. Mott, J. Luo, P.N. Njoki, Y. Lin, L. Wang, and C.J. Zhong: Catal. Today, 2007, vol. 122 (3), pp. 378–85.CrossRefGoogle Scholar
  5. 5.
    J.H. Liu, A.Q. Wang, Y.S. Chi, H.P. Lin, and C.Y. Mou: J. Phys. Chem. B, 2005, vol. 109 (1), pp. 40–43.CrossRefGoogle Scholar
  6. 6.
    X. Gu, Z.H. Lu, H.L. Jiang, T. Akita, and Q. Xu: J. Am. Chem. Soc., 2011, vol. 133 (31), pp. 11822–11825.CrossRefGoogle Scholar
  7. 7.
    K.W. Park, J.H. Choi, B.K. Kwon, S.A. Lee, Y.E. Sung, H.Y. Ha, S.A. Hong, H. Kim, and A. Wieckowski: J. Phys. Chem. B, 2002, vol. 106 (8), pp. 1869–77.CrossRefGoogle Scholar
  8. 8.
    S. Khanal, N. Bhattarai, D. McMaster, D. Bahena, J.J. Velazquez-Salazar, and M. Jose-Yacaman: Phys. Chem. Chem. Phys., 2014, vol. 16 (30), pp. 16278–16283.CrossRefGoogle Scholar
  9. 9.
    S. Jongsomjit, P. Prapainainar, and K. Sombatmankhong: Solid State Ion., 2016, vol. 288, pp. 147–53.CrossRefGoogle Scholar
  10. 10.
    K. Chokprasombat, S. Pinitsoontorn, and S. Maensiri: J. Magn. Magn. Mater., 2016, vol. 405, pp. 174–80.CrossRefGoogle Scholar
  11. 11.
    T.K. Sau, A.L. Rogach, F. Jäckel, T.A. Klar, and J. Feldmann: Adv. Mater., 2010, vol. 22 (16), pp. 1805–25.CrossRefGoogle Scholar
  12. 12.
    J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.Y. Li, and Y. Xia: Nano Lett., 2005, vol. 5 (10), pp. 2058–62.CrossRefGoogle Scholar
  13. 13.
    M.Y. Li, M. Sui, P. Pandey, Q.Z. Zhang, S. Kunwar, G.J. Salamo, and J. Lee: CrystEngComm, 2016, vol. 18 (19), pp. 3347–57.CrossRefGoogle Scholar
  14. 14.
    K. Chen, X. Feng, R. Hu, Y. Li, K. Xie, Y. Li, and H. Gu: J. Alloys Compd., 2013, vol. 554, pp. 72–79.CrossRefGoogle Scholar
  15. 15.
    Y. Sun and H.H. Wang: Adv. Mater., 2007, vol. 19 (19), pp. 2818–23.CrossRefGoogle Scholar
  16. 16.
    S. Kunwar, M. Sui, P. Pandey, Q. Zhang, M.Y. Li, H. Bhandari, and J. Lee: Phys. Chem. Chem. Phys., 2017, vol. 19 (23), pp. 15084–15097.CrossRefGoogle Scholar
  17. 17.
    L. Qiao, D. Wang, L. Zuo, Y. Ye, J. Qian, H. Chen, and S. He: Appl. Energy, 2011, vol. 88 (3), pp. 848–52.CrossRefGoogle Scholar
  18. 18.
    T. Van Cleve, E. Gibara, and S. Linic: ChemCatChem, 2016, vol. 8 (1), pp. 256–61.CrossRefGoogle Scholar
  19. 19.
    J. Petersen and S.G. Mayr: J. Appl. Phys., 2008, vol. 103 (2), p. 023520.Google Scholar
  20. 20.
    T.T. Chng, L. Polavarapu, Q.H. Xu, W. Ji, and H.C. Zeng: Langmuir, 2011, vol. 27 (9), pp. 5633–43.CrossRefGoogle Scholar
  21. 21.
    M. Krupinski, M. Perzanowski, A. Zarzycki, Y. Zabila, and M. Marszałek: Nanotechnology, 2015, vol. 26 (42), p. 425301.CrossRefGoogle Scholar
  22. 22.
    A. Bukaluk and W. Bała: Appl. Surf. Sci., 1990, vol. 45 (1), pp. 57–64.CrossRefGoogle Scholar
  23. 23.
    M.A. Noah, D. Flötotto, Z. Wang, and E.J. Mittemeijer: J. Appl. Phys., 2016, vol. 119 (14), p. 145308.CrossRefGoogle Scholar
  24. 24.
    M.A. Noah, D. Floetotto, Z. Wang, M. Reiner, C. Hugenschmidt, and E.J. Mittemeijer: Acta Mater., 2016, vol. 107, pp. 133–43.CrossRefGoogle Scholar
  25. 25.
    C. Wadell, F.A.A. Nugroho, E. Lidström, B. Iandolo, J.B. Wagner, and C. Langhammer: Nano Lett., 2015, vol. 15 (5), pp. 3563–70.CrossRefGoogle Scholar
  26. 26.
    A. Bukaluk: Appl. Surf. Sci., 2001, vol. 175, pp. 790–96.CrossRefGoogle Scholar
  27. 27.
    F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, and M.G. Grimaldi: Micro Nano Lett., 2013, vol. 8 (3), pp. 127–30.CrossRefGoogle Scholar
  28. 28.
    M. Sui, Q. Zhang, S. Kunwar, P. Pandey, M.Y. Li, and J. Lee: Appl. Surf. Sci., 2017, vol. 416, pp. 1–13.CrossRefGoogle Scholar
  29. 29.
    S. Kunwar, M. Sui, Q. Zhang, P. Pandey, M.Y. Li, and J. Lee: Nano-Micro Lett., 2017, vol. 9 (2), p. 17.CrossRefGoogle Scholar
  30. 30.
    A. Goswami, S. Aravindan, and P.V. Rao: Superlattices Microstruct., 2016, vol. 91, pp. 252–58.CrossRefGoogle Scholar
  31. 31.
    M. Kadleıková, J. Breza, and M. Veselý: Microelectron. J., 2001, vol. 32 (12), pp. 955–58.CrossRefGoogle Scholar
  32. 32.
    G. Zhao, L. Wang, S. Yang, H. Li, H. Wei, D. Han, and Z. Wang: Sci. Rep., 2016, vol. 6.Google Scholar
  33. 33.
    E.J. Guidelli, O. Baffa, and D.R. Clarke: Sci. Rep., 2015, vol. 5, p. 14004.CrossRefGoogle Scholar
  34. 34.
    C. Manuela Müller and R. Spolenak: J. Appl. Phys., 2013, vol. 113 (9), 094301.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Sundar Kunwar
    • 1
  • Puran Pandey
    • 1
  • Mao Sui
    • 1
  • Sushil Bastola
    • 1
  • Jihoon Lee
    • 1
    • 2
  1. 1.College of Electronics and InformationKwangwoon UniversitySeoulSouth Korea
  2. 2.Institute of Nanoscale Science and EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations