Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2113–2123 | Cite as

Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

  • Gnofam Jacques Tchein
  • Dimitri JacquinEmail author
  • Dominique Coupard
  • Eric Lacoste
  • Franck Girot Mata


This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized-β grains.



This work was supported by IdEx Bordeaux within the framework of the Cross-border Joint Laboratory “Aquitania Euskadi Network In Green Manufacturing and Ecodesign” (LTC ÆNIGME). The authors gratefully thank Egoitz Aldanondo Begiristain (Ik4 - LORTEK Research Centre, Ordizia, Spain) for carrying out the FSW joining.


  1. 1.
    V.S. Godiganur, S. Biradar: Int. J. Res. Eng. Technol., 2014, vol. 3, pp. 572–576.CrossRefGoogle Scholar
  2. 2.
    C. He, Y. Liu, J. Dong, Q. Wang, D. Wagner, C. Bathias: Int. J. Fatigue, 2015, vol. 81, pp. 171–178.CrossRefGoogle Scholar
  3. 3.
    P. Cavaliere, A. Squillace, F. Panella: J. Mater. Process. Technol., 2008, vol. 200, pp. 364–372.CrossRefGoogle Scholar
  4. 4.
    M.M.Z. Ahmed, S. Ataya, M.M. El-Sayed Seleman, H.R. Ammar: J. Mater. Process. Technol., 2017, vol. 242, pp. 77–91.CrossRefGoogle Scholar
  5. 5.
    S.R. Kumar, V.S. Rao, R.V. Pranesh: Procedia Mater. Sci., 2014, vol. 5, pp. 1726–1735.CrossRefGoogle Scholar
  6. 6.
    M. Koilraj, V. Sundareswaran, S. Vijayan, S.R. Koteswara Rao: Mater. Des., 2012, vol. 42, pp. 1–7.CrossRefGoogle Scholar
  7. 7.
    A.H. Lotfi, S. Nourouzi: Metall. Mater. Trans. A., 2014, vol. 45, pp. 2792–2807.CrossRefGoogle Scholar
  8. 8.
    Y.S. Sato, S.H.C. Park, A. Matsunaga, A. Honda, H. Kokawa: J. Mater. Sci., 2005, vol. 40, pp. 637–642.CrossRefGoogle Scholar
  9. 9.
    J. Chen, R. Ueji, H. Fujii: Mater. Des., 2015, vol. 76, pp. 181–189.CrossRefGoogle Scholar
  10. 10.
    S.H.C. Park, Y.S. Sato, H. Kokawa: Scr. Mater., 2003, vol. 49, pp. 161–166.CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park: Mater. Sci. Eng. A., 2008, vol. 488, pp. 25–30.CrossRefGoogle Scholar
  12. 12.
    H. Fujii, Y. Sun, H. Kato, K. Nakata: Mater. Sci. Eng. A., 2010, vol. 527, pp. 3386–3391.CrossRefGoogle Scholar
  13. 13.
    P Edwards, M Ramulu (2010) J. Eng. Mater. Technol. 132(031006):10.Google Scholar
  14. 14.
    Y.N. Zhang, X. Cao, S. Larose, P. Wanjara: Can. Metall. Q., 2012, vol. 51, pp. 250–261.CrossRefGoogle Scholar
  15. 15.
    M.H. Shojaeefard, M. Akbari, A. Khalkhali, P. Asadi, A.H. Parivar: Mater. Des., 2014, vol. 64, pp. 660–666.CrossRefGoogle Scholar
  16. 16.
    Ş. Kasman: Int. J. Adv. Manuf. Technol., 2013, vol. 68, pp. 795–804.CrossRefGoogle Scholar
  17. 17.
    N.M. Daniolos, D.I. Pantelis: Int. J. Adv. Manuf. Technol., 2017, vol. 88, pp. 2497–2505.CrossRefGoogle Scholar
  18. 18.
    Wang, J. Su, R.S. Mishra, R. Xu, J.A. Baumann: Wear., 2014, vol. 321, pp. 25–32.CrossRefGoogle Scholar
  19. 19.
    A. Farias, G.F. Batalha, E.F. Prados, R. Magnabosco: Wear., 2013, vol. 302, pp. 1327–1333.CrossRefGoogle Scholar
  20. 20.
    L. Zhou, H.J. Liu, P. Liu, Q.W. Liu: Scripta Mat., 2009, vol. 61, pp. 596–599.CrossRefGoogle Scholar
  21. 21.
    H.J. Liu, L. Zhou, Q.W. Liu: Mater. Des., 2010, vol. 31, pp. 1650–1655.CrossRefGoogle Scholar
  22. 22.
    P. Edwards, M. Ramulu: Sci. Technol. Weld. Join., 2010, vol. 15, pp. 468–472.CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano: Mater. Sci. Eng. A., 2008, vol. 485, pp. 448–455.CrossRefGoogle Scholar
  24. 24.
    S. Yoon, R. Ueji, H. Fujii: Mater. Charact., 2015, vol. 106, pp. 352–358.CrossRefGoogle Scholar
  25. 25.
    M. Esmaily, S. Nooshin Mortazavi, P. Todehfalah, M. Rashidi: Mater. Des., 2013, vol. 47, pp. 143–150.CrossRefGoogle Scholar
  26. 26.
    Y. Combres, C. Champin: Tech. Ing., 1995, M1335. 33, pp. 24.Google Scholar
  27. 27.
    ASM International, ed., Metallography and microstructures, New ed, American Society for Metals, Metals Park, Ohio, 2004.Google Scholar
  28. 28.
    B. Hocheid, R. Klima, C. Beauvais, M. Rapin, C. Roux: Mém Sci Rev Mét., 1970, vol. 72, pp. 583–590.Google Scholar
  29. 29.
    J. Su, J. Wang, R.S. Mishra, R. Xu, J.A. Baumann: Mater. Sci. Eng. A., 2013, vol. 573, pp. 67–74.CrossRefGoogle Scholar
  30. 30.
    M. Humbert, L. Germain, N. Gey, E. Boucard: Acta Mater., 2015, vol. 82, pp. 137–144.CrossRefGoogle Scholar
  31. 31.
    S.C. Wang, M. Aindow, M.J. Starink: Acta Mater., 2003, vol. 51, pp. 2485–2503.CrossRefGoogle Scholar
  32. 32.
    E. Ghasemi, A. Zarei-Hanzaki, E. Farabi, K. Tesař, A. Jäger, M. Rezaee: J. Alloys Compd., 2017, vol. 695, pp. 1706–1718.CrossRefGoogle Scholar
  33. 33.
    X.G. Fan, H. Yang, P.F. Gao, R. Zuo, P.H. Lei: J. Mater. Process. Technol., 2016, vol. 234, pp. 290–299.CrossRefGoogle Scholar
  34. 34.
    S. Lu, D. Ouyang, X. Cui, K. Wang: Trans. Nonferrous Met. Soc. China., 2016, vol. 26, pp. 1003–1010.CrossRefGoogle Scholar
  35. 35.
    F. Montheillet, L. Pallot, D. Piot: 7th Int. Conf. on Processing and Manufacturing of Advanced Materials, THERMEC 2011, vol. 706–709, Quebec City, QC, 2012.Google Scholar
  36. 36.
    S. Gourdet, F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685–2699.CrossRefGoogle Scholar
  37. 37.
    R. Ding, Z.X. Guo, A. Wilson: Mater. Sci. Eng. A., 2002, vol. 327, pp. 233–245.CrossRefGoogle Scholar
  38. 38.
    A. Bardelcik, C.P. Salisbury, S. Winkler, M.A. Wells, M.J. Worswick: Lightweight Struct., 2010, vol. 37, pp. 694–702.Google Scholar
  39. 39.
    F. Le Maitre: Revue de Métallurgie, 1970, vol.67, pp. 563.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Gnofam Jacques Tchein
    • 1
    • 2
  • Dimitri Jacquin
    • 3
    Email author
  • Dominique Coupard
    • 4
  • Eric Lacoste
    • 1
  • Franck Girot Mata
    • 2
    • 5
  1. 1.Univ. Bordeaux, I2M, CNRSTalenceFrance
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringUniversity of the Basque Country, UPV/EHUBilbaoSpain
  3. 3.University of Bordeaux, I2M CNRSGradignan CedexFrance
  4. 4.Arts et Métiers ParisTech, I2M, CNRSTalenceFrance
  5. 5.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations