Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2219–2234 | Cite as

Effect of Starting As-cast Structure on the Microstructure–Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

  • Pranabananda Modak
  • Sudipta Patra
  • Rahul Mitra
  • Debalay Chakrabarti


Effect of the initial as-cast structure on the microstructure–texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having ‘columnar,’ ‘equiaxed,’ and a mixture of ‘columnar’ and ‘equiaxed’ grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely ‘equiaxed’ starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed ‘columnar-equiaxed’ grains.



The authors sincerely thank the Research Infrastructure Development grant (SGDRI-2015) received from SRIC, IIT, Kharagpur. The authors acknowledge the experimental support received from the Department of Metallurgical and Materials Engineering and Central Research Facility,the IIT, Kharagpur.


  1. 1.
    S. Patra and L. K. Singhal: Mater. Sci. Appl., 2013, vol. 4, pp. 70–76.Google Scholar
  2. 2.
    C. Zhang, Z. Liu, and G. Wang: J. Mater. Process. Technol., 2011, vol. 211, pp. 1051–59.CrossRefGoogle Scholar
  3. 3.
    G. M. Sim, J. C. Ahn, S. C. Hong, K. J. Lee, and K. S. Lee: Mater. Sci. Eng. A, 2005, vol. 396, pp. 159–65.CrossRefGoogle Scholar
  4. 4.
    Y. Yazawa, Y. Ozaki, Y. Kato, and O. Furukimi: JSAE Rev., 2003, vol. 24, pp. 483–88.CrossRefGoogle Scholar
  5. 5.
    N. Fujita, K. Ohmura, and A. Yamamoto: Mater. Sci. Eng. A, 2003, vol. 351, pp. 272–81.CrossRefGoogle Scholar
  6. 6.
    V. Kuzucu, M. Aksoy, M.H. Korkut, and M.M. Yildirim: Mater. Sci. Eng. A, 1997, vol. 230, pp. 75–80.CrossRefGoogle Scholar
  7. 7.
    R. N. Wright: Metall. Trans., 1972, vol. 3, pp. 83–91.CrossRefGoogle Scholar
  8. 8.
    J. Han, H. Li, and H. Xu: Mater. Des., 2014, vol. 58, pp. 518–26.CrossRefGoogle Scholar
  9. 9.
    X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, and L. Jiang: Mater. Des., 2016, vol. 89, pp. 626–35.CrossRefGoogle Scholar
  10. 10.
    X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, and L. Jiang: Mater. Des., 2015, vol. 65, pp. 682–89.CrossRefGoogle Scholar
  11. 11.
    J. Han, H. Li, Z. Zhu, F. Barbaro, L. Jiang, H. Xu, and L. Ma: Mater. Des., 2014, vol. 63, pp. 238–46.CrossRefGoogle Scholar
  12. 12.
    M. Alizadeh-Sh, S.P.H. Marashi, and M. Pouranvari: Mater. Des., 2014, vol. 56, pp. 258–63.CrossRefGoogle Scholar
  13. 13.
    F. Gao, Z. Liu, H. Liu, and G. Wang: Mater. Charact., 2013, vol. 75, pp. 93–100.CrossRefGoogle Scholar
  14. 14.
    S. V. Mehtonen, E. J. Palmiere, R. D K Misra, L. P. Karjalainen, and D. A. Porter: Mater. Sci. Eng. A, 2014, vol. 601, pp. 7–19.CrossRefGoogle Scholar
  15. 15.
    J. Shu, H. Bi, X. Li, and Z. Xu: J. Mater. Process. Technol., 2012, vol. 212, pp. 59–65.CrossRefGoogle Scholar
  16. 16.
    H. F G De Abreu, A. D S Bruno, S. S M Tavares, R. P. Santos, and S. S. Carvalho: Mater. Charact., 2006, vol. 57, pp. 342–47.CrossRefGoogle Scholar
  17. 17.
    H. J. Shin, J. K. An, S. H. Park, and D. N. Lee: Acta Mater., 2003, vol. 51, pp. 4693–4706.CrossRefGoogle Scholar
  18. 18.
    R. P. Siqueira, H. R.Z. Sandim, T. R. Oliveira, and D. Raabe: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3513–19.CrossRefGoogle Scholar
  19. 19.
    X.-Y. Fang, W.-G. Wang, H. Guo, C.-X. Qin, and B.-X. Zhou: J. Cent. South Univ., 2012, vol. 19, pp. 3363–68.CrossRefGoogle Scholar
  20. 20.
    P. D. Wu, H. Jin, Y. Shi, and D. J. Lloyd: Mater. Sci. Eng. A, 2006, vol. 423, pp. 300–305.CrossRefGoogle Scholar
  21. 21.
    P. D. Wu, D. J. Lloyd, and Y. Huang: Mater. Sci. Eng. A, 2006, vol. 427, pp. 241–45.CrossRefGoogle Scholar
  22. 22.
    M. Y. Huh, J. H. Lee, S. H. Park, O. Engler, and D. Raabe: Steel Res. Int., 2005, vol. 76, pp. 797–806.CrossRefGoogle Scholar
  23. 23.
    R. D. Knutsen and N. J. Wittridge: Mater. Sci. Technol., 2002, vol. 18, pp. 1279–85.CrossRefGoogle Scholar
  24. 24.
    O. Engler, M. Y. Huh, and C. N. Tomé: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2005, vol. 36, pp. 3127–39.CrossRefGoogle Scholar
  25. 25.
    F. Gao, F. X. Yu, R. D.K. Misra, Xi. J. Zhang, S. M. Zhang, and Z. Y. Liu: J. Mater. Eng. Perform., 2015, vol. 24, pp. 3862–80.CrossRefGoogle Scholar
  26. 26.
    H.-J. Shin, J.-K. An, and D. N. Lee: 2004, pp. 275–82.Google Scholar
  27. 27.
    S. Patra, A. Ghosh, J. Sood, L. K. Singhal, A. S. Podder, and D. Chakrabarti: Mater. Des., 2016, vol. 106, pp. 336–48.CrossRefGoogle Scholar
  28. 28.
    K. Kimura, K. Ushioda, E. Ishimaru, and A. Takahashi: Mater. Sci. Eng. A, 2016, vol. 663, pp. 86–97.CrossRefGoogle Scholar
  29. 29.
    D. Raabe and K. Lüucke: Mater. Sci. Technol., 1993, vol. 9, pp. 302–12.CrossRefGoogle Scholar
  30. 30.
    I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Mater. Sci. Eng. A, 1997, vol. 238, pp. 343–50.CrossRefGoogle Scholar
  31. 31.
    A. Martínez-de-Guerenu, F. Arizti, M. Díaz-Fuentes, and I. Gutiérrez: Acta Mater., 2004, vol. 52, pp. 3657–64.CrossRefGoogle Scholar
  32. 32.
    N. J. Wittridge and R. D. Knutsen: Mater. Sci. Eng. A, 1999, vol. 269, pp. 205–16.CrossRefGoogle Scholar
  33. 33.
    X. Ma, J. Zhao, W. Du, X. Zhang, L. Jiang, and Z. Jiang: Mater. Sci. Eng. A, 2017, vol. 685, pp. 358–66.CrossRefGoogle Scholar
  34. 34.
    I. Samajdar, B. Verlinden, L. Kestens, and P. Van Houtte: Acta Mater, 1999, vol. 47, pp. 55–65.CrossRefGoogle Scholar
  35. 35.
    J. J. Jonas and L. Kestens: Mater. Sci. Forum, 1996, vol. 204–206, pp. 155–68.CrossRefGoogle Scholar
  36. 36.
    K. Verbeken and L. Kestens: Mater. Sci. Forum, 2002, vol. 408–412, pp. 559–64.CrossRefGoogle Scholar
  37. 37.
    R. Petrov, L. Kestens, K. Verbeken, and Y. Houbaert: Mater. Sci. Forum, 2004, vol. 467–470, pp. 305–10.CrossRefGoogle Scholar
  38. 38.
    K. Verbeken and L. Kestens: Mater. Sci. Forum, 2005, vol. 495–497, pp. 1189–94.CrossRefGoogle Scholar
  39. 39.
    T. Tsuchiyama, R. Hirota, K. Fukunaga, and S. Takaki: ISIJ Int., 2005, vol. 45, pp. 923–29.CrossRefGoogle Scholar
  40. 40.
    F. Gao, Z. Liu, R. D. K. Misra, H. Liu, and F. Yu: Met. Mater. Int., 2014, vol. 20, pp. 939–51.CrossRefGoogle Scholar
  41. 41.
    F. V. Braga, D. P. Escobar, T. A. Reis, N. J. L. D. Oliveira, and M. S. Andrade: J. Mater. Res. Technol., 2016, vol. 5, pp. 92–99.CrossRefGoogle Scholar
  42. 42.
    J. H. Lee, S. H. Park, and M. Y. Huh: Mater. Sci. Forum, 2004, vol. 449–452, pp. 113–16.CrossRefGoogle Scholar
  43. 43.
    Md. Zaid and P. P. Bhattacharjee: Mater. Charact., 2014, vol. 96, pp. 263–72.CrossRefGoogle Scholar
  44. 44.
    M. Y. Huh and O. Engler: Mater. Sci. Eng. A, 2001, vol. 308, pp. 74–87.CrossRefGoogle Scholar
  45. 45.
    J. Mola, I. Jung, J. Park, D. Chae, and B. C D E Cooman: 2011.Google Scholar
  46. 46.
    H. T. Liu, Z. Y. Liu, Y. Q. Qiu, G. M. Cao, C. G. Li, and G. D. Wang: Mater. Charact., 2009, vol. 60, pp. 79–82.CrossRefGoogle Scholar
  47. 47.
    V Engler, O; Randle: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. 2 Edn, CRC Press, Baco Raton 2008.Google Scholar
  48. 48.
    D. Chakrabarti, C. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.CrossRefGoogle Scholar
  49. 49.
    ASTM: E517, 1998, vol. 3, pp. 1–8.Google Scholar
  50. 50.
    ASTM: E8/E8M—13a, 2009, pp. 1–27.Google Scholar
  51. 51.
    [51] F. Gao, Z. Y. Liu, H. T. Liu, and G. D. Wang: J. Iron Steel Res. Int., 2013, vol. 20, pp. 31–38.CrossRefGoogle Scholar
  52. 52.
    H. Yan, H. Bi, X. Li, and Z. Xu: J. Mater. Process. Technol., 2009, vol. 209, pp. 2627–31.CrossRefGoogle Scholar
  53. 53.
    [53] Y Hayakawa, J A Szpunar, G Palumbo, and P Lin: J. Magn. Magn. Mater., 1996, vol. 160, pp. 143–44.CrossRefGoogle Scholar
  54. 54.
    Y Hayakawa, M Muraki, and J A Szpunar: Acta Mater., 1998, vol. 46, pp. 1063–73.CrossRefGoogle Scholar
  55. 55.
    L. Tan, T. R. Allen, and J. T. Busby: J. Nucl. Mater., 2013, vol. 441, pp. 661–66.CrossRefGoogle Scholar
  56. 56.
    C. M. Sellars and J. A. Whiteman: Met. Sci., 1979, vol. 13, pp. 187–94.CrossRefGoogle Scholar
  57. 57.
    N. Tsuji, K. Tsuzaki, and T. Maki: ISIJ Int., 1992, vol. 32, pp. 1319–28.CrossRefGoogle Scholar
  58. 58.
    I. Tikhovskiy, D. Raabe, and F. Roters: Scr. Mater., 2006, vol. 54, pp. 1537–42.CrossRefGoogle Scholar
  59. 59.
    R. K. Ray and J. J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–36.CrossRefGoogle Scholar
  60. 60.
    S. H. Park, K. Y. Kim, Y. D. Lee, and C. G. Park: ISIJ Int., 2002, vol. 42, pp. 100–105.CrossRefGoogle Scholar
  61. 61.
    G. E. Dieter: Mech. Metall. SI Metr. Ed. McGraw-Hill B. Co, 1962, vol. 273, p. 338.Google Scholar
  62. 62.
    R. W. Hertzberg: Deform. Fract. Mech. Eng. Mater. 2nd Ed. J. Wiley Sons, 1996, p. 810.Google Scholar
  63. 63.
    J. C. Kim, J. J. Kim, J. Y. Choi, J. H. Choi, and S. K. Kim: Metall. Ital., 2009, vol. 101, pp. 43–48.Google Scholar
  64. 64.
    Hashimoto S, Takahashi A, Hamada J, Kimura K, Morohoshi T, Yamada Y, Kakihara T (2008) Pat Appl Publ 1:455Google Scholar
  65. 65.
    K. Kimura, S. Fukumoto, G. Shigesato, and A. Takahashi: Tetsu-to-Hagane, 2012, vol. 98, pp. 601–9.CrossRefGoogle Scholar
  66. 66.
    C. Wang, H. Gao, Y. Dai, X. Ruan, J. Wang, and B. Sun: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1616–20.CrossRefGoogle Scholar
  67. 67.
    H. Takeuchi, H. Mori, Y. Ikehara, T. Komano, and T. Yanai: Trans. Iron Steel Inst. Japan, 1981, vol. 21, pp. 109–16.CrossRefGoogle Scholar
  68. 68.
    V. Villaret, F. Deschaux-Beaume, and C. Bordreuil: J. Mater. Process. Technol., 2016, vol. 233, pp. 115–24.CrossRefGoogle Scholar
  69. 69.
    J. Han, H. Li, F. Barbaro, Z. Zhu, L. Jiang, H. Xu, and L. Ma: Mater. Sci. Eng. A, 2014, vol. 616, pp. 20–28.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Pranabananda Modak
    • 1
  • Sudipta Patra
    • 1
    • 2
  • Rahul Mitra
    • 1
  • Debalay Chakrabarti
    • 1
  1. 1.Indian Institute of Technology KharagpurKharagpurIndia
  2. 2.Jindal Stainless LimitedHisarIndia

Personalised recommendations