Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2037–2047 | Cite as

Delamination of Pearlitic Steel Wires: The Defining Role of Prior-Drawing Microstructure

  • A. Durgaprasad
  • S. Giri
  • S. Lenka
  • Sudip Kumar Sarkar
  • Aniruddha Biswas
  • S. Kundu
  • S. Mishra
  • S. Chandra
  • R. D. Doherty
  • I. Samajdar
Article

Abstract

This article reports the occasional (< 10 pct of the actual production) delamination of pearlitic wires subjected to a drawing strain of ~ 2.5. The original wire rods which exhibited post-drawing delamination had noticeably lower axial alignment of the pearlite: 22 ± 5 pct vs 34 ± 4 pct in the nondelaminated wires. Although all wires had similar through-thickness texture and stress gradients, delaminated wires had stronger gradients in composition and higher hardness across the ferrite–cementite interface. Carbide dissolution and formation of supersaturated ferrite were clearly correlated with delamination, which could be effectively mitigated by controlled laboratory annealing at 673 K. Direct observations on samples subjected to simple shear revealed significant differences in shear localizations. These were controlled by pearlite morphology and interlamellar spacing. Prior-drawing microstructure of coarse misaligned pearlite thus emerged as a critical factor in the wire drawing-induced delamination of the pearlitic wires.

Notes

Acknowledgment

Supports from the Tata Steel and the DST (Department of Science and Technology, India) are acknowledged. The authors would also like to express their appreciation for the usage of the National Facility of Texture and OIM (at IIT Bombay), the Nano-Indention facility (a central facility of IIT Bombay), and the TEM laboratory (of SAIF, IIT Bombay). Support from the CoEST (Center of Excellence in Steel Technology) IIT Bombay is also acknowledged.

References

  1. 1.
    Y. Li, D. Raabe, M. Herbig, P. Choi, S. Goto, A. Kostka and H. Yarita: Phys. Rev. Lett., 2014, Vol. 113, 106104, pp. 1-5.Google Scholar
  2. 2.
    M. Zelin: Acta Mater., 2002, Vol. 50, pp. 4431-4447.CrossRefGoogle Scholar
  3. 3.
    X. Zhang, A. Godfrey, X. Huang, N. Hansen, Q. Liu, Acta Mater., 2011, Vol. 59, pp. 3422-3430.CrossRefGoogle Scholar
  4. 4.
    C. Borchers and R. Kirchheim: Prog. Mater. Sci., 2016, Vol. 82, pp. 405–444.CrossRefGoogle Scholar
  5. 5.
    J. D. Embury and R. M. Fisher: Acta Metall., 1966, Vol. 14, pp. 147-159.CrossRefGoogle Scholar
  6. 6.
    G. Langford: Metall. Trans. A, 1970, Vol. 1, pp. 465-477.CrossRefGoogle Scholar
  7. 7.
    J. Languillaume, G. Kapelski and B. Baudelet: Acta Mater., 1997, Vol. 45, pp. 1201-1212.CrossRefGoogle Scholar
  8. 8.
    K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie and T. Takahashi: Scr. Mater., 2001, Vol. 44, pp. 977–983CrossRefGoogle Scholar
  9. 9.
    W. J. Nam, C. M. Bae, S. J. Oh and S. Kwon: Scr. Mater., 2000, Vol. 42, pp. 457–463.CrossRefGoogle Scholar
  10. 10.
    S. Goto, R. Kirchheim, T. Al-Kassab and C. Borchers: Trans. Nonferrous Met. SOC. China, 2007, Vol. 17, pp. 1129-1138.CrossRefGoogle Scholar
  11. 11.
    N. Maruyama, T. Tarui and H. Tashiro: Scr. Mater., 2002, Vol. 46, pp. 599-603.CrossRefGoogle Scholar
  12. 12.
    Y. S. Yang and C. G. Park: Int. J Mod. Phy. B, 2008, Vol. 22, pp. 5471–5476.CrossRefGoogle Scholar
  13. 13.
    K. Shimizu and N. Kawabe: ISIJ Int., 2001, Vol. 41, pp. 183–191.CrossRefGoogle Scholar
  14. 14.
    X. Hu, L. Wang, F. Fang, Z. Ma, Z. Xie and J. Jiang: J Mater Sci., 2013,Vol. 48, pp. 5528–5535.CrossRefGoogle Scholar
  15. 15.
    D.B. Park, E.G. Kang and W.J. Nam: J Mater. Proc. Tech., 2007, Vol. 187–188, pp. 178–181.CrossRefGoogle Scholar
  16. 16.
    D. B. Park, J. W. Lee, Y. S. Lee, K. T. Park and W. J. Nam: Met. Mater. Int., 2009, Vol. 15, pp. 197-202.CrossRefGoogle Scholar
  17. 17.
    N. Guo, B. Song, B. Shu and Q. Liu: Acta Metall. Sin., 2015, Vol. 28, pp. 707-714.CrossRefGoogle Scholar
  18. 18.
    S. K. Lee, D. C. Ko and B. M. Kim: Mater. Des., 2009, Vol. 30, pp. 2919-2927.CrossRefGoogle Scholar
  19. 19.
    J.W. Lee, J.C. Lee, Y.S. Lee, K.T. Park and W.J. Nam: J Mater. Proc. Tech., 2009, Vol. 209, pp. 5300–5304.CrossRefGoogle Scholar
  20. 20.
    M. Tanaka, H. Saito, M. Yasumaru and K. Higashida: Scr. Mater., 2016, Vol. 112, pp. 32-36CrossRefGoogle Scholar
  21. 21.
    H. M. Baek, S. K. Hwang, H. S. Joo, Y. T. Im, I. H. Son and C. M. Bae: Mater. Des., 2014, Vol. 62, pp. 137-148CrossRefGoogle Scholar
  22. 22.
    S.W. Joung, U.G.Kang, S.P.Hong, Y.W.Kim and W.J.Nam: Mater. Sci. Eng. A, 2013, Vol. 586, pp. 171-177CrossRefGoogle Scholar
  23. 23.
    C. M. Bae, W. J. Nam and C. S. Lee: Scr. Mater., 1996, Vol. 35, pp. 641-646.CrossRefGoogle Scholar
  24. 24.
    A. Durgaprasad, Ph.D. Thesis, Dept. of Metallurgical Engineering and Materials Science, Indian Institute of Bombay, Mumbai, 2017.Google Scholar
  25. 25.
    A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R. D. Doherty and I. Samajdar, Acta Mater., 2017, Vol. 129, pp. 278-289.CrossRefGoogle Scholar
  26. 26.
    A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R. D. Doherty and I. Samajdar: Metall. Trans A., 2017, vol. 48, pp. 4583-4597.CrossRefGoogle Scholar
  27. 27.
    A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R. D. Doherty and I. Samajdar: “Microstructural Engineering in Eutectoid Steel: A Technological Possibility?”, Under review (Manuscript # E-TP-17-1040-A), Metallurgical and Materials Transaction A, 2017.Google Scholar
  28. 28.
    T. Z. Zhao, S. H. Zhang, G. L. Zhang, H. W. Song and M. Cheng: Mater. Des., 2014, Vol. 59, pp. 397-405CrossRefGoogle Scholar
  29. 29.
    P. Van Houtte, The “MTM-FHM” and “MTM-TAY” Software System - Version 2, Manual, Department of MME, KLU Leuven, Belgium, 1995.Google Scholar
  30. 30.
    HJ Bunge (2013) Texture Analysis in Materials Science: Mathematical Methods, Elsevier, Oxford.Google Scholar
  31. 31.
    P. Van Houtte P. and L. De Buyser: Acta Metall. Mater., 1993, Vol. 41, pp. 323.CrossRefGoogle Scholar
  32. 32.
    Verlinden B, Driver J, Samajdar I, Doherty RD. Thermo-Mechanical Processing of Metallic Materials, 1st edition. Pergamon Materials Series, Elsevier, Oxford; 2007.Google Scholar
  33. 33.
    A. Borbely, J. H. Driver and T. Ungar: Acta Mater., 2000, Vol. 48, pp. 2005-2016.CrossRefGoogle Scholar
  34. 34.
    T. Ungar, I. Dragomir, A. Revesz and A. Borbely: J. Appl. Cryst., 1999, Vol. 32, pp. 992 - 1002CrossRefGoogle Scholar
  35. 35.
    Aniruddha Biswas, Debasis Sen, Sudip Kumar Sarkar, Sarita, S. and David N. Seidman: Acta Mater., 2016, Vol. 116, pp. 219-230CrossRefGoogle Scholar
  36. 36.
    Aniruddha Biswas, Donald J. Siegel and David N. Seidman: Acta Mater., 2014, Vol. 75, pp. 322–336.CrossRefGoogle Scholar
  37. 37.
    T. Z. Zhao, G. L. Zhan, S. H. Zhang, L. Y. Zhang: J Iron Steel Res. Int., 2016, vol. 23, pp. 1206-1212.CrossRefGoogle Scholar
  38. 38.
    L. Zhou, F. Fang, L. Wang, H. Chen, Z. Xie, J. Jiang: Mater. Sci. Eng. A, 2018, vol. 713, pp. 52–60.CrossRefGoogle Scholar
  39. 39.
    VN Gridnev, VG Gavrilyuki, Y Dekhtyayr, YM Eshkov, PS Nizin, VG Prokope (1972) Phys. Stat. Sol. A 11:689-694.CrossRefGoogle Scholar
  40. 40.
    Y.J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe and R. Kirchheim: Acta Mater., 2011, Vol. 59, pp. 3965–3977.CrossRefGoogle Scholar
  41. 41.
    Y.J. Li, P. Choi, C. Borchers, Y. Z. Chen, S. Goto, D. Raabe and R. Kirchheim: Ultramicroscopy, 2011, Vol. 111, pp. 628–632.CrossRefGoogle Scholar
  42. 42.
    J. Chakraborty, M. Ghosh, Rajeev Ranjan, G. Das, D. Das and S. Chandra: Phil. Mag., 2013, Vol. 93,pp. 4598-4616.CrossRefGoogle Scholar
  43. 43.
    V. G. Gavriljuk: Mater Sci Eng. A., 2003, Vol. 345, pp. 81-89.CrossRefGoogle Scholar
  44. 44.
    H. G. Read, W. T. Reynolds Jr, K. Hono and T. Tarui: Scr Mater., 1997, Vol. 37, pp. 1221-1230CrossRefGoogle Scholar
  45. 45.
    M. H. Hong, W. T. Reynolds Jr, T. Tarui and K. Hono: Metall. Mater Trans. A., 1999, Vol. 30, pp. 717-27CrossRefGoogle Scholar
  46. 46.
    Y. Li, D. Raabe, M. Herbig, P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers and R. Kirchheim: Phy Rev Let., 2014, Vol. 113, pp. 1-5.Google Scholar
  47. 47.
    C. Borchers, T. A. Kasaab, S. Goto and R. Kirchheim: Mater Sci Eng. A, 2009, Vol. 502, pp. 131-138.CrossRefGoogle Scholar
  48. 48.
    C. A. Bronkhorst, E. K. Cerreta, Q. Xue, P. J. Maudlin, T. A. Mason and G. T. Gray, Int. J Plast, 2006, Vol. 22, pp. 1304-1335.CrossRefGoogle Scholar
  49. 49.
    Y. Yang, F. Jiang, B. M. Zhou, X. M. Li, H. G. Zheng and Q. M. Zhang: Mater. Sci. Eng. A, 2011, Vol. 528, pp. 2787-2794.CrossRefGoogle Scholar
  50. 50.
    N. Keskar, S. Mukherjee, K.V. Mani Krishna, D. Srivastava, G.K. Dey, P. Pant, R.D. Doherty and I. Samajdar: Acta Mater., 2014, Vol. 69, pp. 265–274.CrossRefGoogle Scholar
  51. 51.
    Jaiveer Singh, S. Mahesh, Shomic Roy, Gulshan Kumar, D. Srivastava, G.K. Dey, N. Saibaba and I. Samajdar: Acta Mater., 2017, Vol. 123, pp. 337-349.CrossRefGoogle Scholar
  52. 52.
    Gulshan Kumar, Sandip Balo, Ashish Dhoble, Jaiveer Singh, Ramesh Singh, D. Srivastava, G.K. Dey and I. Samajdar: Metall. Mater. Trans. A, 2017, Vol. 48, pp. 2844–2857.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • A. Durgaprasad
    • 1
  • S. Giri
    • 1
    • 2
  • S. Lenka
    • 2
  • Sudip Kumar Sarkar
    • 5
  • Aniruddha Biswas
    • 5
  • S. Kundu
    • 2
  • S. Mishra
    • 3
  • S. Chandra
    • 2
  • R. D. Doherty
    • 1
    • 4
  • I. Samajdar
    • 1
  1. 1.Department of Metallurgical Engineering and Materials ScienceIIT BombayMumbaiIndia
  2. 2.Research and Development DivisionTata SteelJamshedpurIndia
  3. 3.Department of Mechanical EngineeringIIT BombayMumbaiIndia
  4. 4.Department of Materials Science and EngineeringDrexel UniversityPhiladelphiaUSA
  5. 5.Glass and Advanced Materials DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations