Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2533–2550 | Cite as

Compositional Dependence of Optical and Structural Properties of Nanogranular Mixed ZrO2/ZnO/SnO2 Thin Film

  • S. Salari
  • F. E. Ghodsi
Article
  • 125 Downloads

Abstract

A study on the optical properties and photoluminescence (PL) spectra of ternary oxide nanogranular thin films comprising Zr, Zn, and Sn revealed that the change in component ratio could direct the roadmap to improve characteristics of the films. Grazing angle X-ray diffraction analysis showed that incorporation of Sn atoms into the tetragonal structure of Zn/Zr thin film resulted in an amorphous structure. The band gap of film was tunable by precisely controlling the concentration of components. The widening of band gap could correlate to the quantum confinement effect. PL spectra of the composite thin films under excitation at 365 nm showed a sharp red emission with relatively Gaussian line shape, which was intensified in the optimum percentage ratio of 50/30/20. This nearly red emission is attributed to the radiative emission of electrons captured at low-energy traps located near the valence band. An optimum red emission is strongly desirable for use in white LEDs. The comparative study on FTIR spectra of unary, binary, and ternary thin films confirmed successful composition of three different metal oxides in ternary thin films. Detailed investigation on FTIR spectra of ternary compounds revealed that the quenching in PL emission at higher percentage of Sn was originally due to the hydroxyl group.

Graphical Abstract

Notes

Acknowledgment

The authors acknowledge the University of Guilan Research Council for their support of this work.

References

  1. 1.
    1. K. Wang, M.A. Morris, J.D. Holmes, J. Yu, and R. Xu: Micropor. Mesopor. Mater., 2009, vol. 117, pp. 161–64.CrossRefGoogle Scholar
  2. 2.
    E. Zalnezhad, A. Hamouda, J. Jaworski, and Y. Do Kim: Sci. Rep., 2016, vol. 6, pp. 33282(1)–(9).Google Scholar
  3. 3.
    W. Weinreich, L. Wilde, J. Müller, J. Sundqvist, E. Erben, J. Heitmann, M. Lemberger, and A.J. Bauer: J. Vac. Sci. Technol., A, 2013, vol. 31, pp. 01A119(1)–(9).Google Scholar
  4. 4.
    4. K. Smits, D. Olsteins, A. Zolotarjovs, K. Laganovska, D. Millers, R. Ignatans, and J. Grabis: Sci. Rep., 2017, vol. 7, pp. 1–7.CrossRefGoogle Scholar
  5. 5.
    5. B.S.B. Reddy, I. Mal, S. Tewari, K. Das, and S. Das: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1786–93.CrossRefGoogle Scholar
  6. 6.
    6. S. Parida, A. Satapathy, E. Sinha, A. Bisen, and S.K. Rout: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1277–86.CrossRefGoogle Scholar
  7. 7.
    7. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang: Science, 2001, vol. 292, pp. 1897–99.CrossRefGoogle Scholar
  8. 8.
    8. F. Ghodsi, F. Tepehan, and G. Tepehan: Sol. Energy Mater. Sol. Cells, 2008, vol. 92, pp. 234–39.CrossRefGoogle Scholar
  9. 9.
    9. L. Liang, Y. Sheng, Y. Xu, D. Wu, and Y. Sun: Thin Solid Films, 2007, vol. 515, pp. 7765–71.CrossRefGoogle Scholar
  10. 10.
    10. B. Hua, J. Si, K. Hirao, G. Qian, and M. Wang: J. Non-Cryst. Solids, 2005, vol. 351, pp. 41–44.CrossRefGoogle Scholar
  11. 11.
    11. H. Hayashi, O. Yoshida, and H. Suzuki: J. Ceram. Soc. Jpn., 2009, vol. 117, pp. 978–82.CrossRefGoogle Scholar
  12. 12.
    12. M.M. Ibrahim: Spectrochim. Acta, Part A, 2015, vol. 145, pp. 487–92.CrossRefGoogle Scholar
  13. 13.
    13. S. Qadri, H. Kim, H. Khan, A. Pique, J. Horwitz, D. Chrisey, W. Kim, and E. Skelton: Thin Solid Films, 2000, vol. 377, pp. 750–54.CrossRefGoogle Scholar
  14. 14.
    14. F.E. Ghodsi, F.Z. Tepehan, and G.G. Tepehan: J. Phys. Chem. Sol., 2011, vol. 72, pp. 761–67.CrossRefGoogle Scholar
  15. 15.
    15. G. Mountjoy, M.A. Holland, P. Gunawidjaja, D.M. Pickup, G.W. Wallidge, M.E. Smith, and R.J. Newport: J. Sol-Gel Sci. Technol., 2003, vol. 26, pp. 137–41.CrossRefGoogle Scholar
  16. 16.
    16. K. Tajima, Y. Yamada, and K. Yoshimura: Sol. Energy Mater. Sol. Cells, 2014, vol. 126, pp. 227–36.CrossRefGoogle Scholar
  17. 17.
    17. T. Ivanova, A. Harizanova, T. Koutzarova, and B. Vertruyen: Cryst. Res. Technol., 2010, vol. 45, pp. 1154–60.CrossRefGoogle Scholar
  18. 18.
    18. S. Qadri, E. Skelton, P. Lubitz, N. Nguyen, and H. Khan: Thin Solid Films, 1996, vol. 290, pp. 80–83.CrossRefGoogle Scholar
  19. 19.
    19. S.B. Qadri, H. Kim, J.S. Horwitz, and D.B. Chrisey: J. Appl. Phys., 2000, vol. 88, pp. 6564–66.CrossRefGoogle Scholar
  20. 20.
    V.-H. Tran, R.B. Ambade, S.B. Ambade, S.-H. Lee, and I.-H. Lee: ACS Appl. Mater. Interfaces, 2017, vol., pp. 1645–53.Google Scholar
  21. 21.
    21. H. Yang, S. Yu, H. Liang, S. Lau, S. Pramana, C. Ferraris, C. Cheng, and H. Fan: ACS Appl. Mater. Interfaces, 2010, vol. 2, pp. 1191–94.CrossRefGoogle Scholar
  22. 22.
    22. J. Mazloom, F. Ghodsi, and H. Golmojdeh: J. Alloys Compd., 2015, vol. 639, pp. 393–99.CrossRefGoogle Scholar
  23. 23.
    23. T. Tharsika, A.S.M.A. Haseeb, and M.F.M. Sabri: Thin Solid Films, 2014, vol. 558, pp. 283–88.CrossRefGoogle Scholar
  24. 24.
    C. Ramana, R. Vemuri, I. Fernandez, and A. Campbell: Appl. Phys. Lett., 2009, vol. 95, pp. 231905(1)–(3).Google Scholar
  25. 25.
    25. D. Tahir, S.K. Oh, H.J. Kang, and S. Tougaard: Thin Solid Films, 2016, vol. 616, pp. 425–30.CrossRefGoogle Scholar
  26. 26.
    26. A. Ortiz, J. Alonso, and E. Haro-Poniatowski: J. Electron. Mater., 2005, vol. 34, pp. 150–55.CrossRefGoogle Scholar
  27. 27.
    27. R. Ashiri: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4138–54.CrossRefGoogle Scholar
  28. 28.
    28. V.S. Anitha, S. Sujatha Lekshmy, and K. Joy: J. Alloys Compd., 2016, vol. 675, pp. 331–40.CrossRefGoogle Scholar
  29. 29.
    29. M.G. Moustafa and M.Y. Hassaan: J. Alloys Compd., 2017, vol. 710, pp. 312–22.CrossRefGoogle Scholar
  30. 30.
    C. Tiseanu, V.I. Parvulescu, M. Sanchez-Dominguez, and M. Boutonnet: J. Appl. Phys., 2011, vol. 110, pp. 103521(1)–(4).Google Scholar
  31. 31.
    31. C. Phillippi and K. Mazdiyasni: J. Am. Ceram. Soc., 1971, vol. 54, pp. 254–58.CrossRefGoogle Scholar
  32. 32.
    32. Z. Yang, Z. Ye, and Z. Xu: Phys. E, 2009, vol. 42, pp. 116–19.CrossRefGoogle Scholar
  33. 33.
    33. T. Ivanova, A. Harizanova, T. Koutzarova, N. Krins, and B. Vertruyen: Mater. Sci. Eng., B, 2009, vol. 165, pp. 212–16.CrossRefGoogle Scholar
  34. 34.
    34. V. Anitha, S.S. Lekshmy, and K. Joy: J. Mater. Sci.: Mater. Electron., 2013, vol. 24, pp. 4340–45.Google Scholar
  35. 35.
    P. Mohanapriya, R. Pradeepkumar, N. Victor Jaya, and T. Natarajan: Appl. Phys. Lett., 2014, vol. 105, pp. 022406(1)–(5).Google Scholar
  36. 36.
    36. S. Jayakumar, P. Ananthapadmanabhan, K. Perumal, T. Thiyagarajan, S. Mishra, L. Su, A. Tok, and J. Guo: Mater. Sci. Eng., B, 2011, vol. 176, pp. 894–99.CrossRefGoogle Scholar
  37. 37.
    37. R. Ashiri: Vib. Spectrosc., 2013, vol. 66, pp. 24–29.CrossRefGoogle Scholar
  38. 38.
    38. K. Gnanamoorthi, M. Balakrishnan, R. Mariappan, and E.R. Kumar: Mater. Sci. Semicond. Process., 2015, vol. 30, pp. 518–26.CrossRefGoogle Scholar
  39. 39.
    39. R. Ashiri, A. Nemati, and M. Sasani Ghamsari: Ceram. Int., 2014, vol. 40, pp. 8613–19.CrossRefGoogle Scholar
  40. 40.
    E.G. Birgin, I. Chambouleyron, and J.M. Martínez: J. Comput. Phys., 1999, vol. 151, pp. 862–80.Google Scholar
  41. 41.
    41. D. Poelman and P.F. Smet: J. Phys. D: Appl. Phys., 2003, vol. 36, pp. 1850–57.CrossRefGoogle Scholar
  42. 42.
    42. K. Schmitt and C. Hoffmann: Optical Guided-Wave Chemical and Biosensors I, Springer, New York, NY, 2010, pp. 21–54.CrossRefGoogle Scholar
  43. 43.
    43. R. Ashiri, A. Nemati, M. Sasani Ghamsari, and H. Aadelkhani: J. Non-Cryst. Solids, 2009, vol. 355, pp. 2480–84.CrossRefGoogle Scholar
  44. 44.
    44. L.-P. Wang, P.-D. Han, Z.-X. Zhang, C.-L. Zhang, and B.-S. Xu: Comput. Mater. Sci., 2013, vol. 77, pp. 281–85.CrossRefGoogle Scholar
  45. 45.
    45. H. Behzad and F. Ghodsi: J. Mater. Sci.: Mater. Electron., 2016, vol. 27, pp. 6096–6107.Google Scholar
  46. 46.
    Z.K. Sani, F.E. Ghodsi, and J. Mazloom: Eur. Phys. J. Appl. Phys., 2016, vol. 74, pp. 10302(1)–(9).Google Scholar
  47. 47.
    47. D.J. Taylor, P.F. Fleig, and S.L. Hietala: Thin Solid Films, 1998, vol. 332, pp. 257–61.CrossRefGoogle Scholar
  48. 48.
    48. B. Yoldas: Appl. Opt., 1980, vol. 19, pp. 1425–29.CrossRefGoogle Scholar
  49. 49.
    49. E.W.M. Born: Principles of Optics, Pergamon Press, Oxford, United Kingdom, 1987, p. 859.Google Scholar
  50. 50.
    50. R. Swanepoel: J. Phys. E: Sci. Instrum., 1983, vol. 16, pp. 1214–22.CrossRefGoogle Scholar
  51. 51.
    J. Tauc: in Optical Properties of Solids, F. Abeles, ed., North-Holland, Amsterdam, 1972, pp. 277–313.Google Scholar
  52. 52.
    52. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard: Phys. Rev. B, 2000, vol. 62, pp. 15942–15951.CrossRefGoogle Scholar
  53. 53.
    53. G. Allan, C. Delerue, and M. Lannoo: Phys. Rev. Lett., 1997, vol. 78, pp. 3161–64.CrossRefGoogle Scholar
  54. 54.
    54. H. Lüth: Solid Surfaces, Interfaces and Thin Films, Springer, Berlin, 2001, p. 577.CrossRefGoogle Scholar
  55. 55.
    55. R.H. French: J. Am. Ceram. Soc., 2000, vol. 83, pp. 2117–46.CrossRefGoogle Scholar
  56. 56.
    56. A.A. Ziabari and F.E. Ghodsi: J. Mater. Sci.: Mater. Electron., 2012, vol. 23, pp. 1628–39.Google Scholar
  57. 57.
    57. P. Prieto, F. Yubero, E. Elizalde, and J.M. Sanz: J. Vac. Sci. Technol., A, 1996, vol. 14, pp. 3181–88.CrossRefGoogle Scholar
  58. 58.
    58. S. Wemple and M. DiDomenico, Jr.: Phys. Rev. B, 1971, vol. 3, pp. 1338–51.CrossRefGoogle Scholar
  59. 59.
    59. J. Gonzalez-Leal, R. Prieto-Alcon, J. Angel, and E. Marquez: J. Non-Cryst. Solids, 2003, vol. 315, pp. 134–43.CrossRefGoogle Scholar
  60. 60.
    60. S. Zhao, F. Ma, K.W. Xu, and H.F. Liang: J. Alloys Compd., 2008, vol. 453, pp. 453–57.CrossRefGoogle Scholar
  61. 61.
    61. N.I. Medvedeva, V.P. Zhukov, M.Y. Khodos, and V.A. Gubanov: Physica Status Solidi (B), 1990, vol. 160, pp. 517–27.CrossRefGoogle Scholar
  62. 62.
    62. J. Lian, R.C. Ewing, L. Wang, and K. Helean: J. Mater. Res., 2004, vol. 19, pp. 1575–80.CrossRefGoogle Scholar
  63. 63.
    63. S. Bhaskar, S. Majumder, M. Jain, P. Dobal, and R. Katiyar: Mater. Sci. Eng., B, 2001, vol. 87, pp. 178–90.CrossRefGoogle Scholar
  64. 64.
    64. E. Simmons: Appl. Opt., 1975, vol. 14, pp. 1380–86.CrossRefGoogle Scholar
  65. 65.
    65. F. Yakuphanoglu: J. Alloys Compd., 2010, vol. 507, pp. 184–89.CrossRefGoogle Scholar
  66. 66.
    66. V. Dimitrov and S. Sakka: J. Appl. Phys., 1996, vol. 79, pp. 1741–45.CrossRefGoogle Scholar
  67. 67.
    67. V. Narayanan and R. Thareja: Opt. Commun., 2006, vol. 260, pp. 170–74.CrossRefGoogle Scholar
  68. 68.
    68. C.C. Wang: Phys. Rev. B, 1970, vol. 2, pp. 2045–48.CrossRefGoogle Scholar
  69. 69.
    69. A.A. Ziabari and F.E. Ghodsi: J. Alloys Compd., 2011, vol. 509, pp. 8748–55.CrossRefGoogle Scholar
  70. 70.
    70. H. Pulker and H. Pulker: Coatings on Glass, Elsevier, Netherlands, 1999, p. 484.Google Scholar
  71. 71.
    71. F.E. Ghodsi, F.Z. Tepehan, and G.G. Tepehan: Electrochim. Acta, 1999, vol. 44, pp. 3127–36.CrossRefGoogle Scholar
  72. 72.
    72. K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, J. Grabis, and W. Lojkowski: J. Lumin., 2011, vol. 131, pp. 2058–62.CrossRefGoogle Scholar
  73. 73.
    73. J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, and P. Mulvaney: Adv. Funct. Mater., 2007, vol. 17, pp. 1654–62.CrossRefGoogle Scholar
  74. 74.
    D.-Y. Cho, H.-S. Jung, J.H. Kim, and C.S. Hwang: Appl. Phys. Lett., 2010, vol. 97, pp. 141905(1)–(3).Google Scholar
  75. 75.
    75. A. Singh and U.T. Nakate: Sci. World J., 2014, vol. 2014, pp. 1–7.Google Scholar
  76. 76.
    76. D. Dexter and J.H. Schulman: J. Chem. Phys., 1954, vol. 22, pp. 1063–70.CrossRefGoogle Scholar
  77. 77.
    77. S. Houde-Walter, P. Peters, J. Stebbins, and Q. Zeng: J. Non-Cryst. Solids, 2001, vol. 286, pp. 118–31.CrossRefGoogle Scholar
  78. 78.
    78. K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, A. Opalinska, J.D. Fidelus, and W. Lojkowski: Opt. Mater., 2010, vol. 32, pp. 827–31.CrossRefGoogle Scholar
  79. 79.
    79. S.D. Meetei and S.D. Singh: J. Lumin., 2014, vol. 147, pp. 328–35.CrossRefGoogle Scholar
  80. 80.
    80. G.-C. Yi, B. Block, G. Ford, and B. Wessels: Appl. Phys. Lett., 1998, vol. 73, pp. 1625–27.CrossRefGoogle Scholar
  81. 81.
    81. E. Snoeks, P. Kik, and A. Polman: Opt. Mater., 1996, vol. 5, pp. 159–67.CrossRefGoogle Scholar
  82. 82.
    82. T. Moon, S.-T. Hwang, D.-R. Jung, D. Son, C. Kim, J. Kim, M. Kang, and B. Park: J. Phys. Chem. C, 2007, vol. 111, pp. 4164–67.CrossRefGoogle Scholar
  83. 83.
    83. S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang: J. Non-Cryst. Solids, 2008, vol. 354, pp. 1357–60.CrossRefGoogle Scholar
  84. 84.
    84. G.K. Sidhu, A.K. Kaushik, S. Rana, S. Bhansali, and R. Kumar: Appl. Surf. Sci., 2015, vol. 334, pp. 216–21.CrossRefGoogle Scholar
  85. 85.
    85. G.-H. Lee, C. Yoon, and S. Kang: J. Mater. Sci., 2008, vol. 43, pp. 6109–15.CrossRefGoogle Scholar
  86. 86.
    H. Zhu, C.C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, and R.-S. Liu: Nat. Commun., 2014, vol. 5, pp. 4312(1)–(10).Google Scholar
  87. 87.
    87. X. Huang: Nat. Photon., 2014, vol. 8, pp. 748–49.CrossRefGoogle Scholar
  88. 88.
    88. M. Peng and L. Wondraczek: Opt. Lett., 2010, vol. 35, pp. 2544–46.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations