Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2523–2532 | Cite as

Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

  • M. Bahamirian
  • S. M. M. Hadavi
  • M. R. Rahimipour
  • M. Farvizi
  • A. Keyvani


Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen’s and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10−6 K−1.



The authors would like to acknowledge the financial support from the Iran National Science Foundation (INSF).

Supplementary material

11661_2018_4555_MOESM1_ESM.tif (3.5 mb)
Supplementary material 1 (TIFF 3584 kb)


  1. 1.
    R. Rajendran, Eng. Failure Anal., 2012, vol. 26, pp. 355-369.CrossRefGoogle Scholar
  2. 2.
    H. Xu and H. Guo, Thermal Barrier Coatings, Woodhead Publishing Limited, Cambridge, 2011, pp. 25-45.CrossRefGoogle Scholar
  3. 3.
    R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, Surf. Coat. Technol., 2010, vol. 205, pp. 938-942.CrossRefGoogle Scholar
  4. 4.
    S. Bose, High Temperature Coatings, 2nd ed. Butterworth-Heinemann, Oxford, 2011, pp. 155-232.Google Scholar
  5. 5.
    B. Gleeson, J. Propul. Power, vol. 22, pp. 375-383, 2006.CrossRefGoogle Scholar
  6. 6.
    M. Hajizadeh-Oghaz, R. S. Razavi, and M. R. Loghman-Estarki, J. Sol-Gel Sci. Technol., 2014, vol. 70, pp. 6-13.CrossRefGoogle Scholar
  7. 7.
    X. Cao, R. Vassen, and D. Stoever, J. Eur. Ceram. Soc., 2004, vol. 24, pp. 1-10.CrossRefGoogle Scholar
  8. 8.
    A. Loganathan and A. S. Gandhi, Mater. Sci. Eng. A, 2012, vol. 556, pp. 927-935.CrossRefGoogle Scholar
  9. 9.
    D. Clarke and C. Levi, Annu. Rev. Mater. Res., 2003, vol. 33, pp. 383-417.CrossRefGoogle Scholar
  10. 10.
    R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stöver, J. Am. Ceram. Soc., 2000, vol. 83, pp. 2023-2028.CrossRefGoogle Scholar
  11. 11.
    M. Stiger, N. Yanar, M. Topping, F. Pettit, and G. Meier, Z. Metallkd., 1999, vol. 90, pp. 1069-1078.Google Scholar
  12. 12.
    C. Funke, J. Mailand, B. Siebert, R. Vaβen, and D. Stöver, Surf. Coat. Technol., 1997, vol. 94, pp. 106-11.CrossRefGoogle Scholar
  13. 13.
    S.A. Tsipas, J. Eur. Ceram. Soc., 2010, vol. 30, pp. 61-72.CrossRefGoogle Scholar
  14. 14.
    J. Xiang, C. Shuhai, J. Huang, W. Liang, C. Yanjun, W. Ruijun, J. Rare Earths, 2012, vol. 30, pp. 228-232.CrossRefGoogle Scholar
  15. 15.
    M. R. Loghman-Estarki, M. Hajizadeh-Oghaz, H. Edris, and R. S. Razavi, Cryst. Eng. Comm., 2013, vol. 15, pp. 5898-5909.CrossRefGoogle Scholar
  16. 16.
    T. Chraska, A. H. King, and C. C. Berndt, Mater. Sci. Eng. A, 2000, vol. 286, pp. 169-178.CrossRefGoogle Scholar
  17. 17.
    H. Scott, J. Mater. Sci., 1975, vol. 10, pp. 1527-1535.CrossRefGoogle Scholar
  18. 18.
    T. Sakuma, Key Eng. Mater., 1998, vol. 153-154, pp. 75-96.CrossRefGoogle Scholar
  19. 19.
    E. H. Kisi and C. Howard, Key Eng. Mater., 1998, vol. 153-154, pp. 1-36.CrossRefGoogle Scholar
  20. 20.
    C. Viazzi, J.-P. Bonino, F. Ansart, and A. Barnabé, J. Alloys Compd., 2008, vol. 452, pp. 377-383.CrossRefGoogle Scholar
  21. 21.
    C. G. Levi, Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 77-91.CrossRefGoogle Scholar
  22. 22.
    E. Bakan and R. Vaßen, J. Therm. Spray Technol., 2017, vol. 26, pp. 992-1010.CrossRefGoogle Scholar
  23. 23.
    D. Zhu, Y. L. Chen, and R. A. Miller, NASA/TM, 2004, 212480.Google Scholar
  24. 24.
    N. P. Padture, Nat. Mater., 2016, vol. 15, pp. 804-809.CrossRefGoogle Scholar
  25. 25.
    S.-H. Jung, Z. Lu, Y.-G. Jung, D. Song, U. Paik, B.-G. Choi, Surf. Coat. Technol., 2017, vol. 323, pp. 39-48.CrossRefGoogle Scholar
  26. 26.
    Sulzer Metco, Material Product Data Sheet: Zirconia Gadolinia Ytterbia Yttria Agglomerated and Sintered Thermal Spray Powder, 2015, DSMTS-0099.4.Google Scholar
  27. 27.
    L. Tan, L. Zhao, S. Guo, E. Khosravi, and S. Yang, TMS2013 Supplemental Proceedings, 2013, pp. 335–42.Google Scholar
  28. 28.
    A. Keyvani and M. Bahamirian, Mater. Res. Express, 2016, vol. 3, pp.1-12.CrossRefGoogle Scholar
  29. 29.
    A. Keyvani and M. Bahamirian, Surf. Eng., 2017, vol. 33 (6), pp. 433-443.CrossRefGoogle Scholar
  30. 30.
    E. Muccillo, E. Souza, and R. Muccillo, J. Alloys Compd., 2002, vol. 344, pp. 175-178.CrossRefGoogle Scholar
  31. 31.
    R. Juarez, D. Lamas, G. Lascalea, and N. W. De Reca, J. Eur. Ceram. Soc., 2000, vol. 20, pp. 133-138.CrossRefGoogle Scholar
  32. 32.
    V. V. Srdić, M. Winterer, and H. Hahn, J. Am. Ceram. Soc., 2000, vol. 83, pp. 729-736.CrossRefGoogle Scholar
  33. 33.
    B. D. Cullity and J. W. Weymouth, Am. J. Phys., 1957, vol. 25, pp. 394-395.CrossRefGoogle Scholar
  34. 34.
    J. I. Langford and A. Wilson, J. Appl. Crystallogr., 1978, vol. 11, pp. 102-13.CrossRefGoogle Scholar
  35. 35.
    G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts, 3rd ed., John Wiley & Sons, Chichester, 2004, pp. 95-98.Google Scholar
  36. 36.
    A. Ortiz, J. Alonso, and E. Haro-Poniatowski, J. Electron. Mater., 2005, vol. 34, pp. 150-155.CrossRefGoogle Scholar
  37. 37.
    I. Kosacki, V. Petrovsky, H. U. Anderson, and P. Colomban, J. Am. Ceram. Soc., 2002, vol. 85, pp. 2646-2650.CrossRefGoogle Scholar
  38. 38.
    A. Naumenko, N. Berezovska, M. Biliy, and O. Shevchenko, Phys. Chem. Solid State, 2008, vol. 9, pp. 121-125.Google Scholar
  39. 39.
    A. Ghosh, A. Suri, M. Pandey, S. Thomas, T. R. Mohan, and B. Rao, Mater. Lett., 2006, vol. 60, pp. 1170-1173.CrossRefGoogle Scholar
  40. 40.
    S. Shukla and S. Seal, Int.Mater. Rev., 2005, vol. 50, pp. 45-64.CrossRefGoogle Scholar
  41. 41.
    R. Garvie and M. Goss, J. Mater. Sci., 1986, vol. 21, pp. 1253-1257.CrossRefGoogle Scholar
  42. 42.
    M. Bhagwat and V. Ramaswamy, Mater. Res. Bull., 2004, vol. 39, pp. 1627-1640.CrossRefGoogle Scholar
  43. 43.
    M. Bhagwat, A. Ramaswamy, A. Tyagi, and V. Ramaswamy, Mater. Res. Bull., 2003, vol. 38, pp. 1713-1724.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • M. Bahamirian
    • 1
  • S. M. M. Hadavi
    • 2
  • M. R. Rahimipour
    • 1
  • M. Farvizi
    • 1
  • A. Keyvani
    • 3
  1. 1.Department of CeramicsMaterials and Energy Research CenterKarajIran
  2. 2.Department of Materials EngineeringUniversity of Tarbiat ModaresTehranIran
  3. 3.Department of Metallurgy and Materials Engineering, Faculty of Technology and EngineeringUniversity of Shahr-e kordShahr-e kordIran

Personalised recommendations