Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2099–2112 | Cite as

Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel

  • R. Santosh
  • G. Das
  • S. Kumar
  • P. K. Singh
  • M. Ghosh
Article
  • 248 Downloads

Abstract

The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.

References

  1. 1.
    C. Jang, J. Lee, J.S. Kim, and T.E. Jin: Int. J. Press. Vess. Piping, 2008, vol. 85, pp. 635–46.CrossRefGoogle Scholar
  2. 2.
    R. Chhibber, N. Arora, S.R. Gupta, and B.K. Dutta: J. Mech. Eng. Sci., 2006, vol. 220, pp. 1121–33.CrossRefGoogle Scholar
  3. 3.
    R. Miteva and N.G. Taylor: NESC Report, Institute for Energy, Netherlands, 2006.Google Scholar
  4. 4.
    J.N. DuPont, J.N. Lippold, and S.D. Kiser: Welding Metallurgy and Weldability of Ni-Base Alloys, Wiley, Hoboken, NJ, 2009, pp. 327–76.Google Scholar
  5. 5.
    A. Celik and A. Alsaran: Mater. Charact., 1999, vol. 43, pp. 311–18.CrossRefGoogle Scholar
  6. 6.
    H. Naffakh, M. Shamanian, and F. Ashrafizadeh: J. Mater. Processing Technol., 2009, vol. 209, pp. 3628–39.CrossRefGoogle Scholar
  7. 7.
    M. Sireesha, S.K. Albert, V. Shankar, and S. Sundaresan: J. Nucl. Mater., 2000, vol. 279, pp. 65–76.CrossRefGoogle Scholar
  8. 8.
    J.W. Kim, K. Lee, J.S. Kim, and T.S. Byun: J. Nucl. Mater., 2009, vol. 384, pp. 212–21.CrossRefGoogle Scholar
  9. 9.
    H.T. Wang, G.Z. Wang, F.Z. Xuan, C.J. Liu, and S.T. Tu: Mater. Sci. Eng. A, 2013, vol. 568, pp. 108–17.CrossRefGoogle Scholar
  10. 10.
    D.N. French: Weld Des. Fab., 1981, vol. 54, pp. 92–93.Google Scholar
  11. 11.
    C.D. Lundin: Weld. J., 1982, vol. 61, pp. 58–63.Google Scholar
  12. 12.
    D.W. Wilson: Weld. J., 1990, vol. 69, pp. 71–72.Google Scholar
  13. 13.
    A. K. Bhaduri, S. Venkadesan, P. Rodriguez, and P.G. Mukunda: Int. J. Press. Vess. Piping, 1994, vol. 58, pp. 251–65.CrossRefGoogle Scholar
  14. 14.
    N. Taylor, C. Faidy, and P. Gilles: Assessment of Dissimilar Weld Integrity: Final Report of the NESC-III Project, Institute for Energy, European Commission, DG-Joint Research Centre, 2006Google Scholar
  15. 15.
    A. Wiltner, C. Linsmeier, and T. Jacob: J. Chem. Phys., 2008, vol. 129, pp. 084704-1–084704-10.CrossRefGoogle Scholar
  16. 16.
    G. Ramamurthy: Applied Finite Element Analysis, IK International Publishing House, New Delhi, 2012.Google Scholar
  17. 17.
    T.R. Chandrupatla and A.D. Belegundu: Introduction to Finite Elements in Engineering, PHI Learning Pvt. Limited, New Delhi, 2011.Google Scholar
  18. 18.
    J. Goldak, A. Chakravarti, and M. Bibby: Metall. Trans. B, 1984, vol. 15B, pp. 299–305.CrossRefGoogle Scholar
  19. 19.
    S. Akella, B.R. Kumar, and V. Harinadh: in 1st Int. Conf. on Structural Integrity (ICONS 2014), Kalpakkam, India, 2014, p. 141.Google Scholar
  20. 20.
    S. Sahin, M. Toparli, I. Ozdemir, and S. Sasaki: J. Mater. Proc. Technol., 2003, vol. 132, pp. 235–41.CrossRefGoogle Scholar
  21. 21.
    S. Xu: Proc. Eng., 2011, vol. 15, pp. 3860–64.CrossRefGoogle Scholar
  22. 22.
    M. Ghosh, R. Santosh, S.K. Das, G. Das, B. Mahato, J. Korody, S. Kumar, and P.K. Singh: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3555–68.CrossRefGoogle Scholar
  23. 23.
    R. Nivas, G. Das, S.K. Das, B. Mahato, S. Kumar, K. Shivaprasad, P.K. Singh, and M. Ghosh: Metall. Mater. Trans. A, 2017, vol. 48, pp. 230–45.CrossRefGoogle Scholar
  24. 24.
    A. Joseph, S.K. Rai, T. Jayakumar, and N. Murugan: Int. J. Press. Vess. Piping, 2005, vol. 82, pp. 700–05.CrossRefGoogle Scholar
  25. 25.
    H.P. Seifert and S. Ritter: J. Nucl. Mater., 2008, vol. 378, pp. 197–210.CrossRefGoogle Scholar
  26. 26.
    T.K. Yeh, G.R. Huang, M.Y. Wang, and C.H. Tsai: Progr. Nucl. Energy, 2013, vol. 63, pp. 7–11.CrossRefGoogle Scholar
  27. 27.
    T. Sarikka, M. Ahonen, R. Mouginot, P. Nevasmaa, P. Karjalainen-Roikonen, U. Ehrnstén, and H. Hänninen: Int. J. Press. Vess. Piping, 2016, vol. 145, pp. 13–22.CrossRefGoogle Scholar
  28. 28.
    K. Sharma, H.K. Khandelwal, V. Bhasin, and R. Chhibber: Adv. Mater. Res., 2012, vol. 585, pp. 342–46.CrossRefGoogle Scholar
  29. 29.
  30. 30.
    D.W. Rathod, S. Pandey, P.K. Singh, and R. Prasad: Mater. Sci. Eng. A, 2015, vol. 639, pp. 259–68.CrossRefGoogle Scholar
  31. 31.
    R. Santosh, S.K. Das, G. Das, J. Korody, S. Kumar, P.K. Singh, and M. Ghosh: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3511–21.CrossRefGoogle Scholar
  32. 32.
    K. Ikushima, A. Takeuchi, T. Okada, S. Itoh, S. Nishikawa, and M. Shibahara: Proc. 1st Int. Joint Symp. on Joining and Welding, 1st ed., Hidetoshi Woodhead Publishing, Cambridge, U.K., 2013, pp. 537–45.Google Scholar
  33. 33.
    A. Maekawa, A. Kawahara, H. Serizawa, and H. Murakawa: J. Press. Vess. Technol., 2016, vol. 138, pp. 021401-1–021401-11.CrossRefGoogle Scholar
  34. 34.
    F.W. Brust, Y.P. Yang, and P.M. Scott: Evaluation of Reactor Pressure Vessel (RPV) Nozzle to Hot-Leg Piping Bimetallic Weld Joint Integrity for the VC Summer Nuclear Power Plant, Contract Number–NRC-04-97-052, Job Code W 6775.Google Scholar
  35. 35.
    S. Nadimi, R.J. Khoushehmehr, B. Rohani, and A. Mostafapour: J. Appl. Sci., 2008, vol. 8, pp. 1014–20.CrossRefGoogle Scholar
  36. 36.
    H.S. Hosseini, M. Shamanian, and A. Kermanpur: Mater. Charact., 2011, vol. 62, pp. 425–31.CrossRefGoogle Scholar
  37. 37.
    F. Matsuda and H. Nakagawa: Trans. JWRI, 1984, vol. 13, pp. 159–61.Google Scholar
  38. 38.
    A. Vasilyev: Materials Science & Technology 2007, Detroit, MI, Sept. 16–20, 2007; Fundamentals & Characterization: Phase Stability, Diffusion and Their Application, organized by J. Morral, Z.K. Liu, R. Arroyave, S.A. Attanasio, N. Sandberg, and Y. Sohn, https://www.academia.edu/6752185/Carbon_Diffusion_Coefficient_in_Complexly_Alloyed_Austenite.
  39. 39.
    M. Pett: Mater. Sci. Technol., 2014, vol. 31, pp. 1370–75.Google Scholar
  40. 40.
    M.D. Rowe, T.W. Nelson, and J.C. Lippold: Weld. J., 1999, vol. 78, pp. 31s–37s.Google Scholar
  41. 41.
    J.N. DuPont and C.S. Kusko: Weld. J., 2007, vol. 86, pp. 51s–54s.Google Scholar
  42. 42.
    M.W.A. Rashid, M. Gakim, Z.M. Rosli, and M.A. Azam: Int. J. Electrochem. Sci., 2012, vol. 7, pp. 9465–77.Google Scholar
  43. 43.
    G.D. Huang, D.K. Matlock, and G. Krauss: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 1239–46.CrossRefGoogle Scholar
  44. 44.
  45. 45.
    L. Yang, X. Dang, M. Li, and N. Ji: 2nd Int. Conf. on Electronic & Mechanical Engineering and Information Technology (EMEIT-2012), Shenyang, China, Sept. 7–9, 2012.Google Scholar
  46. 46.
    J.A. Lichtenfeld, C.J. Tyne, and M.C. Mataya: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 147–61.CrossRefGoogle Scholar
  47. 47.
    V. Deaconu: 5th Int. Conf. Structural Integrity of Weld Structures (ISCS2007), 2007, pp. 20–21.Google Scholar
  48. 48.
    R.L. Klueh and J.F. King: Weld. J., 1982, vol. 61, pp. 302–11.Google Scholar
  49. 49.
    K. Laha, K.S. Chandravathi, K.B.S. Rao, S.L. Mannan, and D.H. Sastry: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 115–24.CrossRefGoogle Scholar
  50. 50.
    D.J. Kotecki and V.B. Rajan: Weld. J.–Inc. Weld. Res. Suppl., 1997, vol. 76, pp. 57s–66s.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • R. Santosh
    • 1
  • G. Das
    • 2
  • S. Kumar
    • 3
  • P. K. Singh
    • 3
  • M. Ghosh
    • 2
  1. 1.Department of Mechanical and Manufacturing EngineeringManipal Institute of TechnologyManipalIndia
  2. 2.Materials Science & Technology DivisionCSIR–National Metallurgical LaboratoryJamshedpurIndia
  3. 3.Reactor Safety DivisionBhaba Atomic Research CentreMumbaiIndia

Personalised recommendations