Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2213–2218 | Cite as

Intermetallic Precipitation in Low-Density Steel

  • S. Chatterjee
  • A. Chatterjee
  • D. Chakrabarti
Article
  • 279 Downloads

Abstract

Low-density steels (LDS) represent a relatively new class of material that contains a large concentration of aluminum. In the present work, we studied the effect of copper addition to these steels. Microanalysis and electron diffraction study were used to demonstrate that on the contrary to the theoretical expectation, copper formed a variety of intermetallic, instead of metallic, precipitates on reaction with aluminum. The precipitation led to a significant age-hardening response that imparted a special characteristic to this material, which had never been reported previously.

Notes

Acknowledgments

The authors thank the management at Tata Steel for the characterization facilities used in this work and the National Metallurgical Laboratory (NML, Jamshedpur) for processing the material in the laboratory. Discussions with Professor Sir H.K.D.H Bhadeshia, The University of Cambridge (Cambridge, United Kingdom), and Professor J.J. Jonas, McGill University (Montreal, PQ, Canada), also helped as a source of inspiration.

References

  1. 1.
    R.G. Baligidad, U. Prakash, A. Radhakrishna, V.R. Rao, P.K. Rao, and N.B. Ballal: Scripta Mater., 1997, vol. 36, p. 667.CrossRefGoogle Scholar
  2. 2.
    A. Radhakrishna, R.G. Baligidad, and D.S. Sarma: Scripta Mater., 2001, vol. 45, p. 1077.CrossRefGoogle Scholar
  3. 3.
    G. Frommeyer and U. Brüx: Steel Res. Int., 2006, vol. 77, p. 627.CrossRefGoogle Scholar
  4. 4.
    S.Y. Han, S.Y. Shin, H.J. Lee, B.J. Lee, S. Lee, N.J. Kim, and J.H. Kwak: Metall. Mater. Trans. A, 2012, vol. 43A, p. 843.CrossRefGoogle Scholar
  5. 5.
    R. Rana, C. Liu, and R.K. Ray: Scripta Mater., 2013, vol. 68, pp. 354–59.CrossRefGoogle Scholar
  6. 6.
    S.J. Park, B. Hwang, K.H. Lee, T.H. Lee, D.W. Suh, and H.N. Han: Scripta Mater., 2013, vol. 68, pp 365–69.CrossRefGoogle Scholar
  7. 7.
    S.H. Kim, H. Kim, and N.J. Kim: Nature, 2015, vol. 518, pp. 77–79.CrossRefGoogle Scholar
  8. 8.
    G.D. Preston: Proc. R. Soc. London, 1938, vol. 167, pp. 526–38CrossRefGoogle Scholar
  9. 9.
    E. Hornbogen: J. Light Met., 2001, vol. 1, pp. 127–32.CrossRefGoogle Scholar
  10. 10.
    S.W. Thompson and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, p. 1573.CrossRefGoogle Scholar
  11. 11.
    S.K. Dhua, A. Ray, and D.S. Sharma: Mater. Sci. Eng. A, 2001, vol. 318, pp. 197–210CrossRefGoogle Scholar
  12. 12.
    M.K. Banerjee, P.S. Banerjee, and S. Datta: ISIJ Int., 2001, vol. 41, pp. 257–61.CrossRefGoogle Scholar
  13. 13.
    Thermo-Calc Console Mode, version 2015a, Foundation of Computational Thermodynamics, Stockholm, Sweden.Google Scholar
  14. 14.
    J.L. Murray: Int. Met. Rev., 1985, vol. 30, pp. 211–33.CrossRefGoogle Scholar
  15. 15.
    C. Macchioni, J.A. Rayne, and C.L. Bauer: Phys. Rev. B, 1982, vol. 25, pp. 3865–70.CrossRefGoogle Scholar
  16. 16.
    E.R. Wallach and G.J. Davies: Met. Sci., 1977, vol. 11, pp. 97–102.CrossRefGoogle Scholar
  17. 17.
    S. Westman: Acta Chem. Scand., 1965, vol. 19, p. 2369.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Research & Development, Tata Steel LimitedJamshedpurIndia
  2. 2.Metallurgical and Materials Engineering DepartmentIndian Institute of TechnologyKharagpurIndia

Personalised recommendations