Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2151–2160 | Cite as

The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys

  • X. W. Liu
  • L. Liu
  • G. Liu
  • X. X. Wu
  • D. H. Lu
  • J. Q. Yao
  • W. M. Jiang
  • Z. T. Fan
  • W. B. Zhang
Article

Abstract

As a promising engineering material, high-entropy alloys (HEAs) CrFeCoNi system has attracted extensive attention worldwide. Their cast alloys are of great importance because of their great formability of complex components, which can be further improved through the transition of the columnar to equiaxed grains and grain refinement. In the current work, the influence of C contents on the grain structures and mechanical properties of the as-cast high-entropy alloy CrFeCoNi was chosen as the target and systematically studied via a hybrid approach of the experiments and thermodynamic calculations. The alloys with various C additions were prepared by arc melting and drop cast. The as-cast macrostructure and microstructure were characterized using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The cast HEAs transform from coarse columnar grains into equiaxed grains with the C level increased to ≥ 2 at. pct and the size of equiaxed grains is further decreased with the increasing C addition. It is revealed that the interdendritic segregation of Cr and C results in grain boundary precipitation of M23C6 carbides. The grain refinement is attributed to the additional constitutional supercoiling from the C addition. The yield stress and tensile strength at room temperature are improved due to the transition of columnar to equiaxed grains and grain refinement.

Notes

Acknowledgments

The authors would like to thank the support of the National Nature Science Foundation of China (51775204, 51301123, 51604222 and 51204073), the opening fund (SKLSP201711) of State Key Laboratory of Solidification Processing in NWPU, and the Analytical and Testing Center, HUST.

References

  1. 1.
    Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw and Z. P. Lu: Prog. Mater. Sci., 2014, vol. 61, pp. 1-93.CrossRefGoogle Scholar
  2. 2.
    J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang: Adv. Eng. Mater., 2004, vol. 6 (5), pp. 299-303.CrossRefGoogle Scholar
  3. 3.
    J. Y. He, H. Wang, H. L. Huang, X. D. Xu, M. W. Chen, Y. Wu, X. J. Liu, T. G. Nieh, K. An and Z. P. Lu: Acta Mater., 2016, vol. 102, pp. 187-96.CrossRefGoogle Scholar
  4. 4.
    H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, and Z. Lu: Adv. Mater., 2017, vol. 29 (30), pp. 1701678.Google Scholar
  5. 5.
    T. Huang, L. Jiang, C. Zhang, H. Jiang, Y. Lu, and T. Li: Science China Technological Sciences, 2017.Google Scholar
  6. 6.
    H. W. Yao, J. W. Qiao, M. C. Gao, J. A. Hawk, S. G. Ma, H. F. Zhou and Y. Zhang: Materials Science and Engineering: A, 2016, vol. 674, pp. 203-11.CrossRefGoogle Scholar
  7. 7.
    D. Ma, M. Yao, K. G. Pradeep, C. C. Tasan, H. Springer and D. Raabe: Acta Mater., 2015, vol. 98, pp. 288-96.CrossRefGoogle Scholar
  8. 8.
    S. Fang, W. Chen and Z. Fu: Mater. Design, 2014, vol. 54 (Supplement C), pp. 973–79.Google Scholar
  9. 9.
    D. G. Shaysultanov, G. A. Salishchev, Y. V. Ivanisenko, S. V. Zherebtsov, M. A. Tikhonovsky and N. D. Stepanov: J. Alloy. Compd., 2017, vol. 705, pp. 756-63.CrossRefGoogle Scholar
  10. 10.
    G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler and E. P. George: Acta Mater., 2017, vol. 128, pp. 292-303.CrossRefGoogle Scholar
  11. 11.
    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler and E. P. George: Acta Mater., 2013, vol. 61 (15), pp. 5743-55.CrossRefGoogle Scholar
  12. 12.
    Z. Wu, H. Bei, G. M. Pharr and E. P. George: Acta Mater., 2014, vol. 81, pp. 428-41.CrossRefGoogle Scholar
  13. 13.
    A. Gali and E. P. George: Intermetallics, 2013, vol. 39, pp. 74-8.CrossRefGoogle Scholar
  14. 14.
    Z. Wu, H. Bei, F. Otto, G. M. Pharr and E. P. George: Intermetallics, 2014, vol. 46, pp. 131-40.CrossRefGoogle Scholar
  15. 15.
    F. Otto, N. L. Hanold and E. P. George: Intermetallics, 2014, vol. 54, pp. 39-48.CrossRefGoogle Scholar
  16. 16.
    B. Gludovatz, E. George and R. Ritchie: JOM-US, 2015, vol. 67 (10), pp. 2262-70.CrossRefGoogle Scholar
  17. 17.
    G. Laplanche, O. Horst, F. Otto, G. Eggeler and E. P. George: J. Alloy. Compd., 2015, vol. 647, pp. 548-57.CrossRefGoogle Scholar
  18. 18.
    G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler and E. P. George: J. Alloy. Compd., 2015, vol. 623, pp. 348-53.CrossRefGoogle Scholar
  19. 19.
    B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie: Nat. Commun., 2016, vol. 7.Google Scholar
  20. 20.
    Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, and R.O. Ritchie: Nat. Commun., 2015, vol. 6.Google Scholar
  21. 21.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie: Science, 2014, vol. 345 (6201), pp. 1153-58.CrossRefGoogle Scholar
  22. 22.
    M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy and Y. Champion: Acta Mater., 2015, vol. 88, pp. 355-65.CrossRefGoogle Scholar
  23. 23.
    M. Laurent-Brocq, L. Perrière, R. Pirès and Y. Champion: Mater. Design, 2016, vol. 103, pp. 84-89.CrossRefGoogle Scholar
  24. 24.
    Z. Wang, S. Guo and C. T. Liu: JOM-US, 2014, vol. 66 (10), pp. 1966-72.CrossRefGoogle Scholar
  25. 25.
    Z. Wang, Y. Huang, Y. Yang, J. Wang and C. T. Liu: Scripta Mater., 2015, vol. 94, pp. 28-31.CrossRefGoogle Scholar
  26. 26.
    Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan and T. Li: Sci. Rep.-UK, 2014, vol. 4, pp. 6200.Google Scholar
  27. 27.
    Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao and T. Li: Acta Mater., 2017, vol. 124, pp. 143-50.CrossRefGoogle Scholar
  28. 28.
    M. M. Guzowski, G. K. Sigworth and D. A. Sentner: Metallurgical Transactions A, 1987, vol. 18 (5), pp. 603-19.CrossRefGoogle Scholar
  29. 29.
    Z. P. Lu, H. Wang, M. W. Chen, I. Baker, J. W. Yeh, C. T. Liu and T. G. Nieh: Intermetallics, 2015, vol. 66, pp. 67-76.CrossRefGoogle Scholar
  30. 30.
    W. H. Liu, Y. Wu, J. Y. He, T. G. Nieh and Z. P. Lu: Scripta Mater., 2013, vol. 68 (7), pp. 526-29.CrossRefGoogle Scholar
  31. 31.
    M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz and R. Trivedi: Acta Mater., 2009, vol. 57 (4), pp. 941-71.CrossRefGoogle Scholar
  32. 32.
    M. Easton and D. StJohn: Metallurgical and Materials Transactions A, 1999, vol. 30 (6), pp. 1613-23.CrossRefGoogle Scholar
  33. 33.
    T. T. Cheng: Intermetallics, 2000, vol. 8 (1), pp. 29-37.CrossRefGoogle Scholar
  34. 34.
    N. D. Stepanov, N. Y. Yurchenko, M. A. Tikhonovsky and G. A. Salishchev: J. Alloy. Compd., 2016, vol. 687, pp. 59-71.CrossRefGoogle Scholar
  35. 35.
    S. Praveen, J. Basu, S. Kashyap, and R.S. Kottada: J. Alloys Compd., 2016, vol. 662 (Supplement C), pp. 361-67.Google Scholar
  36. 36.
    Y. Shan, X. Luo, X. Hu and S. Liu: J. Mater. Sci. Technol., 2011, vol. 27 (4), pp. 352-58.CrossRefGoogle Scholar
  37. 37.
    M.A. Easton and D.H. Stjohn: Int. J. Cast Metal. Res., 2000, vol. 12(6), pp. 393–408.Google Scholar
  38. 38.
    F. Otto, A. Dlouhý, K. G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler and E. P. George: Acta Mater., 2016, vol. 112, pp. 40-52.CrossRefGoogle Scholar
  39. 39.
    R. Günther, C. Hartig and R. Bormann: Acta Mater., 2006, vol. 54 (20), pp. 5591-7.CrossRefGoogle Scholar
  40. 40.
    D. Shu, B. Sun, J. Mi and P. S. Grant: Acta Mater., 2011, vol. 59 (5), pp. 2135-44.CrossRefGoogle Scholar
  41. 41.
    A. L. Greer, A. M. Bunn, A. Tronche, P. V. Evans and D. J. Bristow: Acta Mater., 2000, vol. 48 (11), pp. 2823-35.CrossRefGoogle Scholar
  42. 42.
    L. Lu, A. K. Dahle and D. H. StJohn: Scripta Mater., 2005, vol. 53 (5), pp. 517-22.CrossRefGoogle Scholar
  43. 43.
    S. Liu, Y. Chen and H. Han: J. Alloy. Compd., 2015, vol. 624, pp. 266-9.CrossRefGoogle Scholar
  44. 44.
    C. Tong, Y. Chen, J. Yeh, S. Lin, S. Chen, T. Shun, C. Tsau and S. Chang: Metallurgical and Materials Transactions A, 2005, vol. 36 (4), pp. 881-93.CrossRefGoogle Scholar
  45. 45.
    M. Abdel-Reihim, N. Hess, W. Reif and M. E. J. Birch: J. Mater. Sci., 1987, vol. 22 (1), pp. 213-8.CrossRefGoogle Scholar
  46. 46.
    M. Easton and D. StJohn: Metallurgical and Materials Transactions A, 1999, vol. 30 (6), pp. 1625-33.CrossRefGoogle Scholar
  47. 47.
    Y. C. Lee, A. K. Dahle and D. H. StJohn: Metallurgical and Materials Transactions A, 2000, vol. 31 (11), pp. 2895-906.CrossRefGoogle Scholar
  48. 48.
    I. Maxwell and A. Hellawell: Acta Metallurgica, 1975, vol. 23 (2), pp. 229-37.CrossRefGoogle Scholar
  49. 49.
    K. Yamanaka, M. Mori and A. Chiba: Mater. Lett., 2014, vol. 116, pp. 82-5.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • X. W. Liu
    • 1
    • 2
  • L. Liu
    • 1
    • 2
  • G. Liu
    • 3
  • X. X. Wu
    • 4
  • D. H. Lu
    • 1
    • 2
  • J. Q. Yao
    • 1
    • 2
  • W. M. Jiang
    • 1
    • 2
  • Z. T. Fan
    • 1
    • 2
  • W. B. Zhang
    • 5
  1. 1.State Key Laboratory of Materials Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  3. 3.School of Material Science and EngineeringXi’an University of TechnologyXi’anChina
  4. 4.Institute for MaterialsRuhr University BochumBochumGermany
  5. 5.Institute for Applied Materials—Applied Materials PhysicsKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations