Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2202–2212 | Cite as

Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites

  • Hongdi Zhang
  • Yue Liu
  • Fan Zhang
  • Di Zhang
  • Hanxing Zhu
  • Tongxiang Fan
Article
  • 485 Downloads

Abstract

The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 °C to 1000 °C) and from 0.001 to 5 s−1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation (R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s−1 and 1153 K/0.01 s−1 (850 °C/0.01 s−1 and 880 °C/0.01 s−1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites.

Notes

Acknowledgments

We acknowledge the financial supports of the National Key R & D Plan (No. 2017YFB0703101) and the National Science Fund for Distinguished Young Scholars (No. 51425203).

References

  1. 1.
    A.L. Moore and L. Shi: Mater. Today, 2014, vol. 17, pp. 163-74.CrossRefGoogle Scholar
  2. 2.
    J. Cho and K.E. Goodson: Nature Mater., 2015, vol. 14, pp. 136-37.CrossRefGoogle Scholar
  3. 3.
    S. Mallik, N. Ekere, C. Best and R. Bhatti: Appl. Therm. Eng., 2011, vol. 31, pp. 355-62.CrossRefGoogle Scholar
  4. 4.
    Christian Monachon and Ludger Weber: Acta Mater., 2014, vol. 73, pp. 337-46.CrossRefGoogle Scholar
  5. 5.
    Andrey M. Abyzov, Fedor M. Shakhov, Andrey I. Averkin and Vladimir I. Nikolaev: Mater. Design, 2015, vol. 87, pp. 527-39.CrossRefGoogle Scholar
  6. 6.
    T. Schubert, Ł. Ciupiński, W. Zieliński, A. Michalski, T. Weißgärber and B. Kieback: Scripta Mater., 2008, vol. 58, pp. 263-66.CrossRefGoogle Scholar
  7. 7.
    J.W. Li, X.T. Wang, Y. Qiao, Y. Zhang, Z.B. He and H.L. Zhang: Scripta Mater., 2015, vol. 109, pp. 72-75.CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, H.L. Zhang, J.H. Wu and X.T. Wang: Scripta Mater., 2011, vol. 65, pp. 1097-1100.CrossRefGoogle Scholar
  9. 9.
    Q.P. Kang, X.B. He, S.B. Ren, L. Zhang, M. Wu, C.Y. Guo, W. Cui and X.H. Qu: Appl. Therm. Eng., 2013, vol. 60, pp. 423-29.CrossRefGoogle Scholar
  10. 10.
    J.M. Molina-Jordá: Acta Mater., 2015, vol. 96, pp. 101-10.CrossRefGoogle Scholar
  11. 11.
    W.L. Yang, L.P. Zhou, K. Peng, J.J. Zhu and L. Wan: Compos. B, 2013, vol. 55, pp. 1-4.CrossRefGoogle Scholar
  12. 12.
    S.B. Ren, X.Y. Shen, C.Y. Guo, N. Liu, J.B. Zang, X.B. He and X.H. Qu: Compos. Sci. Technol., 2011, vol. 71, pp. 1550-55.CrossRefGoogle Scholar
  13. 13.
    K. Chu, Z.F. Liu, C.C. Jia, H. Chen, X.B. Liang, W.J. Gao, W.H. Tian and H. Guo: J. Alloy. Compd., 2010, vol. 490, pp. 453-58.CrossRefGoogle Scholar
  14. 14.
    R. Liu, W. Cao, T.X. Fan, C.F. Zhang and D. Zhang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4687-93.CrossRefGoogle Scholar
  15. 15.
    Peng Jin, Bolu Xiao, Quanzhao Wang, Zongyi Ma, Yue Liu and Shu Li: J. Mater. Sci. Technol., 2011, vol. 27, pp. 518-24.CrossRefGoogle Scholar
  16. 16.
    Soon H. Hong, Kyung H. Chung and Chi H. Lee: Mater. Sci. Eng. A, 1996, vol. 206, pp. 225-32.CrossRefGoogle Scholar
  17. 17.
    A. S. Hamada, A. Khosravifard, A. P. Kisko, E. Ahmed and D. A. Porter: Mater. Sci. Eng. A, 2016, vol. 669, pp. 469-79.CrossRefGoogle Scholar
  18. 18.
    Yu-Li Li, Wen-Xian Wang, Jun Zhou and Hong-Sheng Chen: Mater. Charact., 2017, vol. 124, pp. 107-16.CrossRefGoogle Scholar
  19. 19.
    Shuang Chen, Jie Teng, Haibo Luo, Yu Wang and Hui Zhang: Mater. Sci. Eng. A, 2017, vol. 697, pp. 194-202.CrossRefGoogle Scholar
  20. 20.
    M. Rajamuthamilselvan and S. Ramanathan: J. Mater. Eng. Perform., 2011, vol. 21, pp. 191-96.CrossRefGoogle Scholar
  21. 21.
    C.M. Sellars and W.J. Mctegart: Acta Metall., 1966, vol. 14, pp. 1136-38.CrossRefGoogle Scholar
  22. 22.
    Sudipta Patra, Abhijit Ghosh, Lokesh Kumar Singhal, Arijit Saha Podder, Jagmohan Sood, Vinod Kumar and Debalay Chakrabarti: Metallurgical and Materials Transactions A, 2016, vol. 48, pp. 294-313.CrossRefGoogle Scholar
  23. 23.
    Yuanbiao Tan, Liyuan Ji, Jingli Duan, Wenchang Liu, Jingwu Zhang and Riping Liu: Metallurgical and Materials Transactions A, 2016, vol. 47, pp. 5974-84.CrossRefGoogle Scholar
  24. 24.
    Shiwen Du, Shuangmei Chen, Jianjun Song and Yongtang Li: Metallurgical and Materials Transactions A, 2017, vol. 48, pp. 1310-20.CrossRefGoogle Scholar
  25. 25.
    E. I. Poliak and J. J. Jonas: Acta Mater., 1996, vol. 44, pp. 127-36.CrossRefGoogle Scholar
  26. 26.
    Justyna Grzonka, Mirosław J. Kruszewski, Marcin Rosiński, Łukasz Ciupiński, Andrzej Michalski and Krzysztof J. Kurzydłowski: Mater. Charact., 2015, vol. 99, pp. 188-94.CrossRefGoogle Scholar
  27. 27.
    X.Y. Shen, X.B. He, S.B. Ren, H.M. Zhang and X.H. Qu: J. Alloy. Compd., 2012, vol. 529, pp. 134-39.CrossRefGoogle Scholar
  28. 28.
    B.K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, R. AshokGandhi: J. Alloys Compd., 2011, vol. 509, pp. 4992-98.CrossRefGoogle Scholar
  29. 29.
    Y. Kim, S.H. Lee, S. Lee and J.W. Noh: Mater. Sci. Eng. A, 2012, vol. 552, pp. 276-82.CrossRefGoogle Scholar
  30. 30.
    J.Q. Zhang, H.S. Di, X.Y. Wang, Y. Cao, J.C. Zhang and T.J. Ma: Mater. Design, 2013, vol. 44, pp. 354-64.CrossRefGoogle Scholar
  31. 31.
    J.Q. Zhang, H.S. Di, K. Mao, X.Y. Wang, Z.J. Han and T.J. Ma: Mater. Sci. Eng. A, 2013, vol. 587, pp. 110-22.CrossRefGoogle Scholar
  32. 32.
    John J. Jonas, Xavier Quelennec, Lan Jiang and Étienne Martin: Acta Mater., 2009, vol. 57, pp. 2748-56.CrossRefGoogle Scholar
  33. 33.
    R. S. Mishra, T. R. Bieler and A. K. Mukherjee: Acta Metall. Mater., 1995, vol. 43, pp. 877-91.CrossRefGoogle Scholar
  34. 34.
    M. Hörnqvist, N. Mortazavi, M. Halvarsson, A. Ruggiero, G. Iannitti and N. Bonora: Acta Mater., 2015, vol. 89, pp. 163-80CrossRefGoogle Scholar
  35. 35.
    Y. Li and T. G. Langdon: Acta Mater., 1998, vol. 46, pp. 3937-48.CrossRefGoogle Scholar
  36. 36.
    S. Gangolu, A. G. Rao, N. Prabhu, V. P. Deshmukh and B. P. Kashyap: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1366-73.CrossRefGoogle Scholar
  37. 37.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker: Metall. Mater. Trans. A, 1984, vol. 15A, pp. 1883-92.CrossRefGoogle Scholar
  38. 38.
    Y.V.R.K. Prasad, K.P. Rao and S. Sasidhara: Hot working guide: A compendium of processing maps. ASM International, Materials Park, Ohio, 1997.Google Scholar
  39. 39.
    O. Sivakesavam and Y.V.R.K. Prasad: Mater. Sci. Eng. A, 2002, vol. A323, pp. 270-77.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Hongdi Zhang
    • 1
  • Yue Liu
    • 1
  • Fan Zhang
    • 1
  • Di Zhang
    • 1
  • Hanxing Zhu
    • 2
  • Tongxiang Fan
    • 1
  1. 1.State Key Laboratory for Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of EngineeringCardiff UniversityCardiffUK

Personalised recommendations