Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2373–2383 | Cite as

Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

  • Fethi Hamdani
  • Nishith K. Das
  • Tetsuo Shoji
Article
  • 157 Downloads

Abstract

The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

Notes

Acknowledgments

The authors would like to acknowledge the New Energy and Industrial Technology Development Organization (NEDO), Japan, for funding this work under contract 14102981-0. The authors are grateful to the following colleagues at Tohoku University for assistance and precious cooperation: Dr. Kenji Abiko, Dr. Seiichi Takaki, Dr. Kunio Takada, and Dr. Yoshiaki Iijima for the production of UHP ingots by means of the cold copper crucible melting technique.

References

  1. 1.
    K.I. Choudhry, S. Mahboubi, G.A. Botton, J.R. Kish, I.M. Svishchev, Corros. Sci., 2015, vol. 100, pp. 222-30.CrossRefGoogle Scholar
  2. 2.
    M.P. Bradly, J. Magee, Y. Yamamoto, D. Helmick, L. Wang, Mater. Sci. Eng. A, 2014, vol. 590, pp. 101-15.CrossRefGoogle Scholar
  3. 3.
    K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. and Eng., 2009, vol. 65, pp. 39–104.CrossRefGoogle Scholar
  4. 4.
    G. Chai, M. Boström, M. Olaison, U. Forsberg, Proc. Eng., 2013, vol. 55, pp. 232-39.CrossRefGoogle Scholar
  5. 5.
    N.D. Evans, P.J. Maziasz, R.W. Swindeman, G.D. Smith, Scripta Mater., 2004, vol. 51, pp 503–07.CrossRefGoogle Scholar
  6. 6.
    J. Rösler, M. Götting, D. Del Genovese, B. Böttger, R. Kopp, M. Wolske, F. Schubert, H.-J. Penkalla, T. Seliga, A. Thoma, A. Scholz, C. Berger, Adv. Eng. Mater., 2003, vol. 7, pp. 469-83.CrossRefGoogle Scholar
  7. 7.
    Z. H. Zhong, Y. F. Gu, Y. Yuan, Z. Shi, Mater. Lett., 2013, vol. 109, pp. 38–41.CrossRefGoogle Scholar
  8. 8.
    M. Takeyama, I. Tarigan, N. Takata, and M. Ueda: 3rd International ECCC Conference (ECCC2014), At Aran Mantegna Via Andrea Mantegna, Rome, Italy, 2014.Google Scholar
  9. 9.
    J.P. Shingledecker and N.D. Evans, Int. J. Pres. Ves. Pip., 2010, vol. 87, pp. 345-50.CrossRefGoogle Scholar
  10. 10.
    T. Tokairin, K. V. Dahl, H. K. Danielsen, F. B. Grumsen, T. Sato, J. Hald, Mater. Sci. Eng. A, 2013, vol. 565, pp 285–91.CrossRefGoogle Scholar
  11. 11.
    T. T. Wang, C. S. Wang, J. T. Guo, L. Z. Zhou, Mater. Sci. Forum, 2013, vol. 747, pp. 647-53.CrossRefGoogle Scholar
  12. 12.
    N.K. Das, T. Shoji, Inter. J. Hyd. Ener., 2013, vol. 38, pp. 1644–56.CrossRefGoogle Scholar
  13. 13.
    J. Xu, T. Shoji, C. Jang, Corros. Sci., 2015, vol 97, pp 115-25.CrossRefGoogle Scholar
  14. 14.
    K. Abiko, T. Nakajima, N. Harima, S. Takaki, Phys. Stat. sol.(a), 1998, vol. 167, pp 347-55.CrossRefGoogle Scholar
  15. 15.
    Y. Yamamoto, M. Takeyama, Z.P. Lu, C.T. Liu, N.D. Evans, P.J. Maziasz, M.P. Brady, Intermetallics, 2008, vol. 16, pp. 453–62.CrossRefGoogle Scholar
  16. 16.
    Y. Yamamoto, M. P. Brady, Z. P. Lu, P. J. Maziasz, C. T. Liu, B. A. Pint, K. L. More, H. M. Meyer, E. A. Payzant, Science, 2007, vol. 316, pp. 433-36.CrossRefGoogle Scholar
  17. 17.
    S.M. Hong, D.J. Min,Y.K. Chung, J.H. Kim, D.I. Kim, J.Y. Suh, J.H. Shim, W.S. Jung, I.S. Choi, Mater. Sci. Eng. A, 2016, vol. 654, pp. 390-99.CrossRefGoogle Scholar
  18. 18.
    F. Hamdani, H. Abe, B. Ter-Ovanessian, B. Normand, Y. Watanabe, Metal. Mater. Trans. A, 2015, vol. 46, pp. 2285-93.CrossRefGoogle Scholar
  19. 19.
    J. K. Tien and F. S. Pettit, Metall. Trans., 1972, vol. 3, pp. 1587-99.CrossRefGoogle Scholar
  20. 20.
    I.A. Kvernes, Oxid. Met., 1973, vol. 6, pp. 45-64.CrossRefGoogle Scholar
  21. 21.
    K. Suzuki, Y. Takeda, Z. Lu, and T. Shoji: Proceedings of ICAPP’04, Paper 4227, Pittsburgh, PA, USA, 2004.Google Scholar
  22. 22.
    P. Hohenberg and W. Kohn, Phys. Rev., 1964, vol. 136, pp. 864-71.CrossRefGoogle Scholar
  23. 23.
    J. P. Perdew, K. Burke, Y. Wang, Phys. Rev., 1996, vol. 54, pp. 16533-39.CrossRefGoogle Scholar
  24. 24.
    B. Delley, J. Chem. Phys., 1990, vol. 92, pp. 508-17.CrossRefGoogle Scholar
  25. 25.
    John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett., 1996, vol. 77, pp. 3865-68.CrossRefGoogle Scholar
  26. 26.
    W.J. Hehre, L. Radom, P.V. R. Scheleyer, and J.A. Pople: Wiley, New York, 1986.Google Scholar
  27. 27.
    M. H. B. Ani, T. Kodama, M. Ueda, K. Kawamura, Mater. Trans., 2009, vol. 50, pp. 2656-63.CrossRefGoogle Scholar
  28. 28.
    I.I. Ahmed, B. Grant, A.H. Sherry, J. Quinta da Fonseca, Mater. Sci. Eng. A, 2014, vol. 614, pp. 326–37.CrossRefGoogle Scholar
  29. 29.
    F. Sun, Y.F. Gu, J.B. Yan, Y.X. Xu, Z.H. Zhong, M. Yuyama, J. All. Comp., 2016, vol. 687, pp. 389-401.CrossRefGoogle Scholar
  30. 30.
    Y. Yamamoto, M.P. Brady, Z.P. Lu, C.T. Liu, M. Takeyama, P.J. Maziasz, B.A. Pint, Metal. Mater. Trans. A, 2007, vol. 38, pp. 2737-46.CrossRefGoogle Scholar
  31. 31.
    R.W. Swindeman, P.J. Maziasz, E. Bolling, and J.F. King: Evaluation of advanced austenitic alloys relative to alloy design criteria for steam service, Oak Ridge National Laboratory Report No. ORNL-6629/P1, Oak Ridge National Laboratory, Oak Ridge, TN, 1990.Google Scholar
  32. 32.
    H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff, E. Caudron, C. Issartel, Mater. Chem. Phys., 2008, vol. 111, pp. 491–96.CrossRefGoogle Scholar
  33. 33.
    S. Lozano-Perez, K. Kruska, I. Iyengar, T. Terachi, and T. Yamada, Corros. Sci., 2012, vol. 56, pp. 78–85.CrossRefGoogle Scholar
  34. 34.
    R.J. Pearce and R.K. Wild: J. Nucl. Mater., 1980, vol. 91, pp. 156–70.Google Scholar
  35. 35.
    N. Otsuka and H. Fujikawa, Corros. Sci., 1991, vol. 47, pp. 240–48.CrossRefGoogle Scholar
  36. 36.
    M. Nezakat, H. Akhiani, S. Penttila, S. M. Sabet, J. Szpunar, Corr. Sci., 2015, vol. 94, pp. 197-206.CrossRefGoogle Scholar
  37. 37.
    S.Y. Persaud, S. Ramamurthy, A. Korinek, G.A. Botton, R.C. Newman, Corros. Sci., 2016, vol. 106, pp. 117-26.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Frontier Research Initiative, New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan

Personalised recommendations