Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2513–2522 | Cite as

Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100−xAlx Metallic Glasses

  • M. Tahiri
  • A. Hasnaoui
  • K. Sbiaai
Article
  • 136 Downloads

Abstract

In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting “icosahedral-like” clusters (12-coordinated 〈0, 0, 12, 0〉 and 13-coordinated 〈0, 1, 10, 2〉) and by playing a main role in the structure stability of the Ti-Al MGs.

Notes

ACKNOWLEDGMENT

We thank Professor S. El Yamani, Hassan 1st University, for editing our article by refining the style and English language of the manuscript.

REFERENCES

  1. 1.
    A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto: Mater. Trans. JIM, 1991, vol. 32, pp. 609–16.CrossRefGoogle Scholar
  2. 2.
    D.H. Xu, G. Duan, and W.L. Johnson: Phys. Rev. Lett., 2004, vol. 92, p. 245504.CrossRefGoogle Scholar
  3. 3.
    T. Masumoto and R. Maddin: Acta Metall., 1971, vol. 19, pp. 725–41.CrossRefGoogle Scholar
  4. 4.
    H.S. Chen: Rep. Progr. Phys., 1980, vol. 43, pp. 353–432.CrossRefGoogle Scholar
  5. 5.
    M.F. Ashby and A.L. Greer: Scripta Mater., 2006, vol. 54, pp. 321–26.CrossRefGoogle Scholar
  6. 6.
    A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306.CrossRefGoogle Scholar
  7. 7.
    J.H. Li, Y. Dai, Y.Y. Cui, and B.X. Liu: Mater. Sci. Eng. R., 2011, vol. 72, pp. 1–28.CrossRefGoogle Scholar
  8. 8.
    C.C. Wang and C.H. Wong: J. Alloys Compds., 2011, vol. 509, pp. 10222–10229.CrossRefGoogle Scholar
  9. 9.
    H.L. Peng, M.Z. Li, W.H. Wang, C.Z. Wang, and K.M. Ho: Appl. Phys. Lett., 2010, vol. 96, p. 021901.CrossRefGoogle Scholar
  10. 10.
    Z.C. Xie, T.H. Gao, X.T. Guo, and Q. Xie: J. Non-Cryst. Solids, 2014, vol. 406, pp. 95–101.CrossRefGoogle Scholar
  11. 11.
    Z.C. Xie, T.H. Gao, X.T. Guo, X.M. Qin, and Q. Xie: Physica B, 2014, vol. 440, pp. 130–37.CrossRefGoogle Scholar
  12. 12.
    Z.C. Xie, T.H. Gao, X.T. Guo, X.M. Qin, and Q. Xie: Comput. Mater. Sci., 2014, vol. 95, pp. 502–08.CrossRefGoogle Scholar
  13. 13.
    C.C. Wang and C.H. Wong: J. Alloys Compds., 2012, vol. 510, pp. 107–13.CrossRefGoogle Scholar
  14. 14.
    H. Chen, Y. He, G.J. Shiflet, and S.J. Poon: Scripta Metall. Mater., 1991, vol. 25, pp. 1421–24.CrossRefGoogle Scholar
  15. 15.
    Y.H. Kim, A. Inoue, and T. Masumoto: Mater. Trans. JIM, 1991, vol. 32, pp. 331–38.CrossRefGoogle Scholar
  16. 16.
    Y. He, S.J. Poon, and G.J. Shiflet: Science, 1988, vol. 241, pp. 1640–42.CrossRefGoogle Scholar
  17. 17.
    S.D. Zhang, Z.M. Wang, X.C. Chang, W.L. Hou, and J.Q. Wang: Corros. Sci., 2011, vol. 53, pp. 3007–15.CrossRefGoogle Scholar
  18. 18.
    N.C. Wu, L. Zuo, J.Q. Wang, and E. Ma: Acta Mater., 2016, vol. 108, pp. 143–51.CrossRefGoogle Scholar
  19. 19.
    G. Chen, W. Zhang, Z. Liu, S. Li, Y. Kim, Y. Kim, D. Dimiduk, and M. Loretto: Gamma Titanium Aluminides, TMS, Warrendale, PA, 1999, p. 371.Google Scholar
  20. 20.
    F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring, and J.D. Paul: Adv. Eng. Mater., 2000, vol. 2, pp. 699–720.CrossRefGoogle Scholar
  21. 21.
    P.C. Priarone, S. Rizzuti, L. Settineri, and G. Vergnano: J. Mater. Process. Technol., 2012, vol. 212, pp. 2619–28.CrossRefGoogle Scholar
  22. 22.
    J. Aguilar, A. Schievenbusch, and O. Kättlitz: Intermetallics, 2011, vol. 19, pp. 757–61.CrossRefGoogle Scholar
  23. 23.
    E.V. Levchenko, A.V. Evteev, G.G. Löwisch, I.V. Belova, and G.E. Murch: Intermetallics, 2012, vol. 22, pp. 193–202.CrossRefGoogle Scholar
  24. 24.
    M. Tahiri, S. Trady, A. Hasnaoui, M. Mazroui, K. Saadouni, and K. Sbiaai: Mod. Phys. Lett. B, 2016, vol. 30, p. 1650170.CrossRefGoogle Scholar
  25. 25.
    M. Tahiri, A. Hassani, A. Hasnaoui, and K. Sbiaai: J. Comput. Condens. Matter, 2018, vol. 14C, pp. 74–83.CrossRefGoogle Scholar
  26. 26.
    S. Plimpton: J. Computat. Phys., 1995, vol. 117, pp. 1–19.CrossRefGoogle Scholar
  27. 27.
    LAMMPS Users Manual, Sandia National Laboratories, Albuquerque, NM, 2014, http://lammps.sandia.gov/.
  28. 28.
    S. Nose: Mol. Phys., 1984, vol. 52, pp. 255–68.CrossRefGoogle Scholar
  29. 29.
    M.S. Daw and M.I. Baskes: Phys. Rev. B, 1984, vol. 29, pp. 6443–53.CrossRefGoogle Scholar
  30. 30.
    M.S. Daw and M.I. Baskes: Phys. Rev. Lett., 1983, vol. 50, pp. 1285–88.CrossRefGoogle Scholar
  31. 31.
    R.R. Zope and Y. Mishin: Phys. Rev. B, 2003, vol. 68, p. 024102.CrossRefGoogle Scholar
  32. 32.
    A.S. Clarke and H. Jónsson: Phys. Rev. E, 1993, vol. 47, pp. 3975–84.CrossRefGoogle Scholar
  33. 33.
    D. Faken and H. Jónsson: Comput. Mater. Sci., 1994, vol. 2, pp. 279–86.CrossRefGoogle Scholar
  34. 34.
    L. Wang, Y. Zhang, H. Yang, and Y. Chen: Phys. Lett. A, 2003, vol. 317, pp. 489–94.CrossRefGoogle Scholar
  35. 35.
    Y.Q. Cheng, J. Ding, and E. Ma: Mater. Res. Lett., 2013, vol. 1, pp. 3–12.CrossRefGoogle Scholar
  36. 36.
    Y.Q. Cheng and E. Ma: Progr. Mater. Sci., 2011, vol. 56, pp. 379–473.CrossRefGoogle Scholar
  37. 37.
    G.Q. Guo, S.Y. Wu, S. Luo, and L. Yang: Metals, 2015, vol. 5, pp. 2093–2108.CrossRefGoogle Scholar
  38. 38.
    H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma: Nature, 2006, vol. 439, pp. 419–25.CrossRefGoogle Scholar
  39. 39.
    D.B. Miracle: Nat. Mater., 2004, vol. 3, pp. 697–702.CrossRefGoogle Scholar
  40. 40.
    R. Soklaski, Z. Nussinov, Z. Markow, K.F. Kelton, and Li Yang: Phys. Rev. B, 2013, vol. 87, p. 184203.CrossRefGoogle Scholar
  41. 41.
    X.D. Wang, H.B. Lou, S.G. Wang, J. Xu, and J.Z. Jiang: Appl. Phys. Lett., 2011, vol. 98, p. 031901.CrossRefGoogle Scholar
  42. 42.
    P. Zhang, J.J. Maldonis, M.F. Besser, M.J. Kramer, and P.M. Voyles: Acta Mater., 2016, vol. 109, pp. 103–14.CrossRefGoogle Scholar
  43. 43.
    Y.C. Liang, R.S. Liu, Y.F. Mo, H.R. Liu, Z.A. Tian, Q. Zhou, H.T. Zhang, L.L. Zhou, Z.Y. Hou, and P. Peng: J. Alloys Compd., 2014, vol. 597, pp. 269–74.CrossRefGoogle Scholar
  44. 44.
    S. Trady, M. Mazroui, A. Hasnaoui, and K. Saadouni: J. Non-Cryst. Solids, 2016, vol. 443, pp. 136–42.CrossRefGoogle Scholar
  45. 45.
    J. Zemp, M. Celino, B. Schonfeld, and J.F. Loffler: Phys. Rev. B, 2014, vol. 90, p. 144108.CrossRefGoogle Scholar
  46. 46.
    S. Trady, M. Mazroui, A. Hasnaoui, and K. Saadouni: J. Non-Cryst. Solids, 2017, vol. 468, pp. 27–33.CrossRefGoogle Scholar
  47. 47.
    A. Hirata, L.J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A.R. Yavari, and M.W. Chen: Science, 2013, vol. 341, pp. 376–79.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Laboratoire LS3M, Faculté Polydisciplinaire KhouribgaUniv Hassan 1KhouribgaMorocco

Personalised recommendations