Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2405–2418 | Cite as

Design Optimization of Microalloyed Steels Using Thermodynamics Principles and Neural-Network-Based Modeling

  • Itishree Mohanty
  • Appa Rao Chintha
  • Saurabh Kundu
Article
  • 190 Downloads

Abstract

The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.

Notes

Acknowledgments

The authors acknowledge the kind permission of the management of Tata Steel to publish this work. The authors are also grateful to all the concerned professionals of rolling mills (HSM and TSCR) and the Product Technology Group (Flat Products) of Tata Steel for their active involvement and necessary support to carry out this work. We especially thank Professor H.K.D.H. Bhadeshia, University of Cambridge, for his valuable comments.

References

  1. 1.
    J.J. Jonas: Mater. Sci. Eng. A, 1994, vol. 184, pp. 155–65.CrossRefGoogle Scholar
  2. 2.
    J.H. Ryu and H.K. Bhadeshia: Mater. Manufact. Processes, 2009, vol. 24, pp. 1–7.CrossRefGoogle Scholar
  3. 3.
    T.N. Baker: Ironmaking Steelmaking, 2016, vol. 43, pp. 264–307.CrossRefGoogle Scholar
  4. 4.
    K. Deb: Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons Ltd., Chichester, England, 2001, pp. 440–80.Google Scholar
  5. 5.
    S. Ganguly, S. Datta, and N. Chakraborti: Comput. Mater. Sci., 2009, vol. 45, pp. 158–66.CrossRefGoogle Scholar
  6. 6.
    S. Pattanayak, S. Dey, S. Chatterjee, S.G. Chowdhury, and S. Datta: Comput. Mater. Sci., 2015, vol. 104, pp. 60–68.CrossRefGoogle Scholar
  7. 7.
    M. Mahfouf, M. Jamei, and D.A. Linkens: Mater. Manufact. Processes, 2005, vol. 20, pp. 553–67.CrossRefGoogle Scholar
  8. 8.
    P. Das, S. Mukherjee, S. Ganguly, B.K. Bhattacharyay, and S. Datta: Comput. Mater. Sci., 2009, vol. 45, pp. 104–10.CrossRefGoogle Scholar
  9. 9.
    I. Mohanty, D. Bhattacharjee, and S. Datta: Comput. Mater. Sci., 2011, vol. 50, pp. 2331–37.CrossRefGoogle Scholar
  10. 10.
    D.K. Matlock and J.G. Speer: Mater. Sci. Technol., 2009, vol. 25, pp. 1118–25.CrossRefGoogle Scholar
  11. 11.
    D. Bhattacharya: HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015: Conf. Proc., 2015, pp. 71–83.Google Scholar
  12. 12.
    Hossam Halfa: J. Miner. Mater. Charact. Eng., 2014, vol. 2, pp. 428–69.Google Scholar
  13. 13.
    Dae-Bum Park, M.Y. Huh, Jae-Hyeok Shim, and Woo-Sang Jung: Mater. Sci. Eng. A, 2013, vol. 560, pp. 528–34.CrossRefGoogle Scholar
  14. 14.
    Chuan-feng Meng, Yi-de Wang, Ying-hui Wei, Bin-qing Shi, Tian-xie Cui, and Yu-tian Wang: J. Iron Steel Res., Int., 2016, vol. 23, pp. 350–56.Google Scholar
  15. 15.
    B. Dutta, E.J. Palmiere, and C.M. Sellars: Acta Mater., 2001, vol. 49, pp. 785–94.CrossRefGoogle Scholar
  16. 16.
    R.M. Brito and H.J. Kestenbach: J. Mater. Sci., 1981, vol. 16, pp. 1257–63.CrossRefGoogle Scholar
  17. 17.
    Yong Woo Kim, Jae Hyung Kim, Seong-Gu Hong, and Chong Soo Lee: Mater. Sci. Eng.: A, 2014, vol. 605, pp. 244–52.CrossRefGoogle Scholar
  18. 18.
    N. Baker: Mater. Sci. Technol., 2009, vol. 25, pp. 1083–1107.CrossRefGoogle Scholar
  19. 19.
    R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson: Scand. J. Metall., 1999, vol. 28, pp. 186–242.Google Scholar
  20. 20.
    J.H. Ryu: Master’s Thesis, GIFT, POSTECH, South Korea, 2007.Google Scholar
  21. 21.
    D. Kalisz and S. Rzadkosz: Arch. Foundry Eng., 2013, vol. 13, pp. 63–68.CrossRefGoogle Scholar
  22. 22.
    C.P. Reip, S. Shanmugam, and R.D.K. Misra: Mater. Sci. Eng. A, 2006, vol. 424, pp. 307–17.CrossRefGoogle Scholar
  23. 23.
    H. Yada: The 131st and 132nd Nishiyama Memorial Sem., ISIJ, Tokyo, 1989, vol. 149.Google Scholar
  24. 24.
    T. Okita: The 131st and 132nd Nishiyama Memorial Sem., ISIJ, Tokyo, 1989, vol. 68.Google Scholar
  25. 25.
    Ohjoon Kwon: ISIJ Int., 1992, vol. 32, pp. 350–58.CrossRefGoogle Scholar
  26. 26.
    I. Tamura, H. Sekine, and T. Tanaka: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth & Co. (Publishers) Ltd., 1988, pp. 202–25.Google Scholar
  27. 27.
    M. Azuma, M. Takahashi, and N. Fujita: Nippon Steel Technical Report No. 102, Nippon Steel, Tokyo, 2013.Google Scholar
  28. 28.
    N. Fujita: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 2000.Google Scholar
  29. 29.
    T. Ogawa, N. Sugiura, N. Maruyama, and N. Yoshinaga: Mater. Sci. Eng. A, 2013, vol. 564, pp. 42–45.CrossRefGoogle Scholar
  30. 30.
    I.A. Basheer and M. Hajmeer: J. Microbiol. Meth., 2000, vol. 43, pp. 3–31.CrossRefGoogle Scholar
  31. 31.
    S. Haykin: Neural Networks: A Comprehensive Foundation, McMillan, New York, NY, 1994.Google Scholar
  32. 32.
    H.K.D.H. Bhadeshia: Statist. Anal. Data Mining, 2009, vol. 1, pp. 296–304.CrossRefGoogle Scholar
  33. 33.
    I. Mohanty, S. Datta, and D. Bhattacharjee: Mater. Manuf. Processes, 2008, vol. 24, pp. 100–05.CrossRefGoogle Scholar
  34. 34.
    I. Mohanty, S. Sarkar, B. Jha, S. Das, and R. Kumar: Ironmaking Steelmaking, 2014, vol. 41, pp. 618–27.CrossRefGoogle Scholar
  35. 35.
    I. Mohanty and D. Bhattacherjee: Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications, IGI Global, 2016, pp. 138–71.Google Scholar
  36. 36.
    D.E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning, Pearson-Education, New Delhi, 2002, pp. 197–201.Google Scholar
  37. 37.
    S. Ganguly, S. Datta, and N. Chakraborti: Mater. Manuf. Processes, 2007, vol. 22, pp. 650–58.CrossRefGoogle Scholar
  38. 38.
    P. Das, S. Mukherjee, S. Ganguly, B.K. Bhattacharyay, and S. Datta: Comput. Mater. Sci., 2009, vol. 45, pp. 104–10.CrossRefGoogle Scholar
  39. 39.
    S. Ganguly, S. Datta, and N. Chakrabortim: Comput. Mater. Sci., 2009, vol. 45, pp. 158–66.CrossRefGoogle Scholar
  40. 40.
    K. Deb: Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons Ltd., Chichester, England, 2001, pp. 25–46.Google Scholar
  41. 41.
    K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan: IEEE Trans. Evol. Comput., 2002, vol. 6, pp. 182–97.CrossRefGoogle Scholar
  42. 42.
  43. 43.
    T. Tanaka: Int. Met. Rev., 1981, vol. 4, pp. 185–212.Google Scholar
  44. 44.
    S. Vervynckt, K. Verbeken, B. Lopez, and J.J. Jonas: Int. Mater. Rev., 2012, vol. 57, p. 187.CrossRefGoogle Scholar
  45. 45.
    Thermo-Calc Software TCFE Steels/Fe-alloys database version 7. Accessed 24 July 2016.Google Scholar
  46. 46.
    Guang Xu, Xiaolong Gan, Guojun Ma, Feng Luo, and Hang Zou: Mater. Des., 2010, vol. 31, pp. 2891–96.CrossRefGoogle Scholar
  47. 47.
    R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, and A. Charai: Acta Mater., 1999, vol. 47, pp. 3475–81.CrossRefGoogle Scholar
  48. 48.
    Y. Li, D.N. Crowther, M.J.W. Green, P.S. Mitchell, and T.N. Baker: ISIJ Int., 2001, vol. 41, pp. 46–55.CrossRefGoogle Scholar
  49. 49.
    R.L. Bodnar, Y. Shen, and W. Furdanowicz: 40th MWSP Conf. Proc., ISS, 1998.Google Scholar
  50. 50.
    B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, pp. 197–206.CrossRefGoogle Scholar
  51. 51.
    Scand. J. Metall., 1999, vol. 28, pp. 1–241.Google Scholar
  52. 52.
    T. Gladman: Mater. Sci. Technol., 1999, vol. 15.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Itishree Mohanty
    • 1
  • Appa Rao Chintha
    • 1
  • Saurabh Kundu
    • 1
  1. 1.Research and DevelopmentTata Steel LimitedJamshedpurIndia

Personalised recommendations