Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2499–2512 | Cite as

Deformation Mechanism and Recrystallization Relationships in Galfenol Single Crystals: On the Origin of Goss and Cube Orientations

  • Suok-Min Na
  • Malcolm Smith
  • Alison B. Flatau
Article

Abstract

In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111}〈112〉 orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001}〈110〉 orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123}〈111〉 slip systems were preferentially activated in these single crystals during deformation as well as {112}〈111〉 slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction (<10 pct) of recrystallized Goss-oriented grains. The weak Goss component remained in the shear bands of the 50 pct rolled Goss-oriented single crystal, and it appeared to be associated with coalescence of subgrains inside shear band structures during primary recrystallization. Rolling of the (001)[110] single crystal led to the formation of a tilted (001)[100] component close to the 〈120〉 orientation, associated with {123}〈111〉 slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.

Notes

Acknowledgment

This work was supported by Office of Naval Research (ONR) MURI Program Grant No. N000140610530.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    R.A. Kellogg, A.B. Flatau, A.E. Clark, M. Wun-Fogle, and T.A. Lograsso: J. Appl. Phys., 2003, vol. 93, pp. 8495-8497.CrossRefGoogle Scholar
  2. 2.
    S.M. Na, J.H. Yoo, and A.B. Flatau: IEEE Trans. Magn., 2009, vol. 45, pp. 4132-4135.CrossRefGoogle Scholar
  3. 3.
    J.H. Li, X.X. Gao, J. Zhu, X.Q. Bao, T. Xia, and M.C. Zhang: Scripta Mater., 2010, vol. 63, pp. 246–249.CrossRefGoogle Scholar
  4. 4.
    S.M. Na and A.B. Flatau: Scripta Mater., 2012, vol. 66, pp. 307-310.CrossRefGoogle Scholar
  5. 5.
    S.M. Na and A.B. Flatau: J. Appl. Phys., 2007, vol. 101, p. 09N518.CrossRefGoogle Scholar
  6. 6.
    S.M. Na and A.B. Flatau: Smart Mater. Struct., 2013, vol. 22, pp. 125026.CrossRefGoogle Scholar
  7. 7.
    A. Sakakura: J. Appl. Phys., 1969, vol. 40, pp. 1534-1538.CrossRefGoogle Scholar
  8. 8.
    P. Lin, G. Palumbo, J. Harase, and K.T. Aust: Acta Mater., 1996, vol. 44, pp. 4677-4683.CrossRefGoogle Scholar
  9. 9.
    D.J. Köhler: J. Appl. Phys., 1960, vol. 31, pp. 408S-409S.CrossRefGoogle Scholar
  10. 10.
    J.J. Kramer: Metall. Mater. Trans. A, 1992, vol. 23, pp. 1987-1998.CrossRefGoogle Scholar
  11. 11.
    Y. Hayakawa: Sci. Technol. Adv. Mater., 2017, vol. 18, pp. 480-497.CrossRefGoogle Scholar
  12. 12.
    I. Samajdar, S. Cicale, B. Verlinden, P. Van Houtte, and G. Abbruzzesse: Scripta Mater., 1998, vol. 39, pp. 1083-1088.CrossRefGoogle Scholar
  13. 13.
    D. Dorner, S. Zaefferer, L. Lahn, and D. Raabe: J. Magn. Magn. Mater., 2006, vol. 304, pp. 183-186.CrossRefGoogle Scholar
  14. 14.
    D. Dorner, S. Zaefferer, and D. Raabe: Acta Mater., 2007, vol. 55, pp. 2519-2530.CrossRefGoogle Scholar
  15. 15.
    C.G. Dunn: Acta Metall., 1954, vol. 2, pp. 173-183.CrossRefGoogle Scholar
  16. 16.
    G.M. Rusakov, M.L. Lobanov, A.A. Redikultsev, and I.V. Kagan: Metall. Mater. Trans. A, 2011, vol. 2A, pp. 1435-1438.CrossRefGoogle Scholar
  17. 17.
    J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., Krieger Publishing Company, Malabar, 1982, p. 275.Google Scholar
  18. 18.
    W.R. Hibbard and W.R. Tully: Trans. Metall. Soc. AIME, 1961, vol. 221, pp. 336-343.Google Scholar
  19. 19.
    B.D. Cullity: Introduction of Magnetic Materials, Reading, MA: Addison-Westly, 1972.Google Scholar
  20. 20.
    J.B. Restorff, M. Wun-Fogle, K.B. Hathaway, A.E. Clark, T.A. Lograsso, and G. Petculescu: J. Appl. Phys., 2012, vol. 111, p. 023905.CrossRefGoogle Scholar
  21. 21.
    H. Abe, M. Matsuo, and K. Ito: Trans. JIM, 1963, vol. 4, pp. 28-32.CrossRefGoogle Scholar
  22. 22.
    P.K. Koh and C. G. Dunn: Trans. Met. Soc. AIME, 1955, vol. 203, pp. 401-406Google Scholar
  23. 23.
    H. Hu: in Recovery and Recrystallization of Meals, L. Himmel, ed., Interscience Publ., New York, 1962, pp. 311–78.Google Scholar
  24. 24.
    T. Taoka, E. Furubayashi, and S. Takeuchi: Trans. ISIJ, 1966, vol. 6, pp. 290-316.Google Scholar
  25. 25.
    T. Taoka, E. Furubayashi, and S. Takeuchi: Trans. ISIJ, 1967, vol. 2, pp. 95-113.Google Scholar
  26. 26.
    T. Toge, M. Muraki, and M. Komatsubara: Mater. Sci. Forum, 1998, vol. 38, pp. 524-530.Google Scholar
  27. 27.
    T. Toge, M. Muraki, M. Komatsubara, and T. Obara: ISIJ International, 2002, vol. 408-412, pp. 1311-1316.Google Scholar
  28. 28.
    J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Second edn. Elsevier, Oxford, 2002.Google Scholar
  29. 29.
    A. Samet-Mezios, A.L. Etter, T. Baudin, and R. Penelle: Mater. Sci. Eng. A, 2008, vol. 473, pp. 342-354.CrossRefGoogle Scholar
  30. 30.
    B. Zhou: Acta Metall. Sinica (english ed.), 1991, vol. 4, pp. 103-107.Google Scholar
  31. 31.
    T. Kumano, T. Haratani, and Y. Ushigami: ISIJ International, 2003, vol. 43, pp. 736-745.CrossRefGoogle Scholar
  32. 32.
    S.M. Na and A.B. Flatau: Smart Mater. Struct., 2012, vol. 21, p. 055024.CrossRefGoogle Scholar
  33. 33.
    J.H. Li, X.X. Gao, J. Zhu, C. He, J. Qiao, and M. Zhang: J. Alloys Comp., 2009, vol. 476, pp. 529-533.CrossRefGoogle Scholar
  34. 34.
    S. Taguchi and A. Sakakura: Acta Metall., 1966, vol. 14, pp. 405.CrossRefGoogle Scholar
  35. 35.
    C.G. Dunn and P.K. Koh: Trans. AIME, 1956, vol. 206, pp. 1017-1024.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.Department of Mechanical EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations