Advertisement

A Double-Nanophase Intragranular-Oxide-Strengthened Iron Alloy with High Strength and Remarkable Ductility

  • Mingli QinEmail author
  • Deyin Zhang
  • Gang Chen
  • Baorui Jia
  • Haoyang Wu
  • Wangwang Ding
  • Lin Zhang
  • Yu Yan
  • Xuanhui Qu
Communication

Abstract

Herein, we introduce a versatile facile strategy for producing double-nanophase intragranular-oxide-strengthened iron alloy. The manufacturing route includes liquid–liquid mixing and rapid combustion at a molecular level that results in a nanocrystalline microstructure with nanosized oxide particles homogeneously distributed in the grain interior. The particular double-nanophase microstructure with an average grain size of 178.5 nm and oxide particle size of 19.3 nm achieves a high ultimate compressive strength of 1.52 GPa and large strain-to-failure of 54 pct.

Notes

This work was financially supported by the National Natural Science Foundation Program of China (51574029, 51574030, 51574031, 51604240, and 51604025), the Natural Science Foundation Program of Beijing (2174079 and 2162027), the China Postdoctoral Science Foundation (2016M591073), and the Fundamental Research Funds for the Central Universities (FRF-TP-17-034A2 and FRF-TP-17-029A1).

Supplementary material

11661_2018_5099_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (DOCX 3369 kb)

References

  1. 1.
    1. K. Lu: Science, 2010, vol. 328, pp. 319-20.CrossRefGoogle Scholar
  2. 2.
    2. R. W. Grimes and W. J. Nuttall: Science, 2010, vol. 329, pp. 799-803.CrossRefGoogle Scholar
  3. 3.
    3. A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu, and M. W. Chen: Nat. Mater., 2011, vol. 10, pp. 922-26.CrossRefGoogle Scholar
  4. 4.
    4. T. Gräning, M. Rieth, J. Hoffmann, and A. Möslang: J Nucl. Mater., 2017, vol. 487 pp. 348-61.CrossRefGoogle Scholar
  5. 5.
    5. X. Boulnat, N. Sallez, M. Dadé, A. Borbély, J. Béchade, Y. De Carlan, J. Malaplate, Y. Bréchet, F. De Geuser, and A. Deschamps: Acta Mater., 2015, vol. 97, pp. 124-30.CrossRefGoogle Scholar
  6. 6.
    6. M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, and A. Deschamps: Acta Mater., 2017, vol.127, pp. 165-77.CrossRefGoogle Scholar
  7. 7.
    7. M. A. Thual, J. Ribis, T. Baudin, V. Klosek, Y. de Carlan, and M. H. Mathon: Scripta Mater., 2017, vol. 136, pp. 37-40.CrossRefGoogle Scholar
  8. 8.
    8. R. Vijay, M. Nagini, J. Joardar, M. Ramakrishna, A. V. Reddy, and G. Sundararajan: Metall. Mater. Trans. A, 2013, vol. 44, pp. 1611-20.CrossRefGoogle Scholar
  9. 9.
    9. R. Vijay, M. Nagini, S. S. Sarma, M. Ramakrishna, A. V. Reddy, and G. Sundararajan: Metall. Mater. Trans. A, 2014, vol. 45, pp. 777-84.CrossRefGoogle Scholar
  10. 10.
    10. D. G. Morris and M. A. Muñoz-Morris: Acta Mater., 2013, vol. 61, pp. 4636-47.CrossRefGoogle Scholar
  11. 11.
    11. G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma: Nat. Mater., 2013, vol. 12, pp. 344-50.CrossRefGoogle Scholar
  12. 12.
    12. A. Varma, A. S. Mukasyan, A. S. Rogachev, and K. V. Manukyan: Chem. Rev., 2016, vol. 116, pp. 14493-586.CrossRefGoogle Scholar
  13. 13.
    13. M. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks: Nat. Mater., 2011, vol. 10, pp. 382-8.CrossRefGoogle Scholar
  14. 14.
    14. J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, and W. Liang: Electrochim. Acta, 2014, vol. 132, pp.127-135.CrossRefGoogle Scholar
  15. 15.
    15. M. G. Chourashiya and A. Urakawa: J Mater. Chem. A, 2017, vol. 5, pp. 4774-78.CrossRefGoogle Scholar
  16. 16.
    16. G. V. Trusov, A. B. Tarasov, E. A. Goodilin, A. S. Rogachev, S. I. Roslyakov, S. Rouvimov, K. B. Podbolotov, and A. S. Mukasyan: J. Phys. Chem. C, 2016, vol. 120, pp. 7165-71.CrossRefGoogle Scholar
  17. 17.
    17. A. Liu, H. Zhu, Z. Guo, Y. Meng, G. Liu, E. Fortunato, R. Martins, and F. Shan: Adv. Mater., 2017, vol. 29, 1701599.CrossRefGoogle Scholar
  18. 18.
    18. F. Li, J. Ran, M. Jaroniec, and S. Z. Qiao: Nanoscale, 2015, vol. 7, 17590.CrossRefGoogle Scholar
  19. 19.
    19. J. Chao, C. Capdevila, M. Serrano, A. Garcia-Junceda, J. A. Jimenez, G. Pimentel, and E. Urones-Garrote: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4581-94.CrossRefGoogle Scholar
  20. 20.
    20. D. G. Morris and M. A. Muñoz-Morris: Acta Mater., 2013, vol. 61, pp. 4636-47.CrossRefGoogle Scholar
  21. 21.
    21. B. Srinivasarao, K. Oh-Ishi, T. Ohkubo, and K. Hono: Acta Mater., 2009, vol. 57, pp. 3277-86.CrossRefGoogle Scholar
  22. 22.
    22. L. Huang, L. Jiang, T. D. Topping, C. Dai, X. Wang, R. Carpenter, C. Haines, and J. M. Schoenung: Acta Mater., 2017, vol. 122, pp. 19-31.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Mingli Qin
    • 1
    Email author
  • Deyin Zhang
    • 1
  • Gang Chen
    • 1
  • Baorui Jia
    • 1
  • Haoyang Wu
    • 1
  • Wangwang Ding
    • 1
  • Lin Zhang
    • 1
  • Yu Yan
    • 1
  • Xuanhui Qu
    • 1
  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations