Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 1, pp 385–394 | Cite as

Critical Phenomena and Estimation of Spontaneous Magnetization by Magnetic Entropy Analysis of La0.7Sr0.3Mn0.94Cu0.06O3

  • P. T. PhongEmail author
  • L. T. T. Ngan
  • L. V. Bau
  • N. M. An
  • L. T. H. Phong
  • N. V. Dang
  • In-Ja LeeEmail author
Article

Abstract

This paper presents a detailed study on the structural, magnetic, and critical behavior and magnetocaloric effect of La0.7Sr0.3Mn0.94Cu0.06O3 prepared by solid-state reaction method. X-ray diffraction patterns indicate that Cu-doped manganite crystallizes to a single phase with a rhombohedral structure. Critical components β, γ, and δ were determined by using modified Arrott plot, Kouvel–Fisher method, and critical isotherm analyses. These components are consistent with their corresponding values and were validated by Widom scaling law and scaling theory. The deduced critical exponents (β = 0.456, γ = 0.9912, and δ = 3.206) are also close to their corresponding theoretical values predicted by mean-field model, indicating that long-range interaction dominates the critical behavior of the LSMCO system. Spontaneous magnetization was determined by two methods. One method is based on magnetic entropy change under different magnetic fields, and the other method is based on classical extrapolation from the Arrott plot. The two methods are in excellent agreement, confirming the validity of the deduction of spontaneous magnetization using the magnetic entropy change.

Notes

Acknowledgments

This work was supported by the National Foundation for Science and Technology under Grant No. 103.02-2016.12. The authors are also thankful to the Ton Duc Thang University and Dongguk University-Gyeongju.

References

  1. 1.
    E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 2001, 344, 1-153.CrossRefGoogle Scholar
  2. 2.
    P. T. Phong, L.V. Bau, L. C. Hoan, D. H. Manh, N. X. Phuc, In-Ja Lee, J. Alloys Compd. 2015, 645, 243-249.CrossRefGoogle Scholar
  3. 3.
    C. Zener, Phys. Rev. 1951, 81, 440-444.CrossRefGoogle Scholar
  4. 4.
    P. T. Phong, L. V. Bau, L. C. Hoan, D. H. Manh, N. X. Phuc, In-Ja Lee, J. Alloys. Compd. 2016, 656, 920-928.CrossRefGoogle Scholar
  5. 5.
    A. J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 1995, 74, 5144-147.CrossRefGoogle Scholar
  6. 6.
    MB Salamon, P Lin, SH Chun, Phys. Rev. Lett. 2002, 88, 197203 (4 pp).CrossRefGoogle Scholar
  7. 7.
    A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B 1995, 51, 14103-14109.CrossRefGoogle Scholar
  8. 8.
    K Cherif, S Zemni, J Dhahri, J Dhari, M Oumezzine, M Ghedira, H Vincent, J. Alloys. Compd. 2005, 396, 29-33.CrossRefGoogle Scholar
  9. 9.
    Z. Guo, J. Zhang, N. Zhang, W. Ding, H. Huang, Y. Du, Appl. Phys. Lett. 1997, 70, 904-905.CrossRefGoogle Scholar
  10. 10.
    V. S. Kolat, S. Atalay, T. Izgi, H. Gencer, N.T Bayri, Metall. Trans. A 2015, 46 (6), 2591–2597.CrossRefGoogle Scholar
  11. 11.
    MH Phan, S.-C. Yu, NH Hur, Appl. Phys. Lett. 2005, 86, 072504 (3 pp).CrossRefGoogle Scholar
  12. 12.
    S. G. Choi, H. -S. Lee, H. Choi, S. -W. Chung, H. -H. Park, J. Phys. D: Appl. Phys. 2013, 46, 425102 (6pp).Google Scholar
  13. 13.
    M. H. Phan, S. -B. Tian, S. -C. Yu, A. N. Ulyanov, J. Magn. Magn. Matter. 2003, 256, 306-310.CrossRefGoogle Scholar
  14. 14.
    F. Ayadi, Y. Regaigeg, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, H. Lecoq, S. Nowak, S. Ammar, L. Sicard, J. Magn. Magn. Matter. 2015, 381, 215-219.CrossRefGoogle Scholar
  15. 15.
    T. D. Thanh, L. H. Nguyen, D. H. Manh, N. V. Chien, P. T. Phong, N. V. Khiem, L. V. Hong, N. X. Phuc, Physica B 2012, 407, 145-152.CrossRefGoogle Scholar
  16. 16.
    V. P. S. Awana, E. Schmitt, E. Gmelin, A. Gupta, A. Sedky, A. V. Narlikar, O. F. de Lima, C. A. Cardoso, S. K. Malik, W. B. Yelon, J. Appl. Phys. 2000, 87, 5034-5036.CrossRefGoogle Scholar
  17. 17.
    DNH Nam, LV Bau, NV Khie, NV Dai, LV Hong, NX Phuc, RS Newrock, P Nordblad, Phys. Rew. B 2006, 73, 184430 (6 pp).CrossRefGoogle Scholar
  18. 18.
    Y. D Zhang, T. -L Phan, D. S Yang, S. C Yu, Curr. Appl. Phys. 2012, 12, 803-807.CrossRefGoogle Scholar
  19. 19.
    T. -L. Phan, T. D. Thanh, S. C. Yu, J. Alloys Compd. 2014, 615, 5247-5251.CrossRefGoogle Scholar
  20. 20.
    P. T. Phong, N. V. Dang, L. V. Bau, N. M. An, In-Ja Lee, J. Alloys Compd. 2017, 698, 451-459.CrossRefGoogle Scholar
  21. 21.
    JL García-Munoz, C Frontera, P Beran, N Bellido, J Hernández-Velasco, C Ritter (2010) Phys. Rev. B 81:11.CrossRefGoogle Scholar
  22. 22.
    L. Haupt, R. Helmolt, U. Sondermann, K.Bamer, Phys. Lett. A 1992, 165, 473-479.CrossRefGoogle Scholar
  23. 23.
    W. E. Pickett, Rev. Mod. Phys. 1989, 61, 433-512.CrossRefGoogle Scholar
  24. 24.
    MS Kim, JB Yang, PE Parris, Q Cai, XD Zhou, WJ James, WB Yelon, D Buddhikot, SK Malik (2005) J. Appl. Phys. 97:3.Google Scholar
  25. 25.
    A. G. Belous, O. I. Vyunov, O. Z. Yanchevskii, A. I. Tovstolytkin,V. O. Golub, Inorg. Mater. 2006, 42, 286-293.CrossRefGoogle Scholar
  26. 26.
    MS Kim, JB Yang, J Medvedeva,WB Yelon, PE Parris, WJ James (2008) J. Phys.: Condens. Matter 20:7.Google Scholar
  27. 27.
    M. -H. Phan, H. –X. Peng, S. –C. Yu, N. D. Tho, N. Chau, J. Magn. Magn. Mater. 2005, 285, 199-203.CrossRefGoogle Scholar
  28. 28.
    N. Chau, P. Q. Niem, H. N. Nhat, N. H. Luong, N. D. Tho, Physica B 2003, 327, 214-217.CrossRefGoogle Scholar
  29. 29.
    M. –H. Phan, S. – C. Yu, J. Magn. Magn. Mater. 2007, 308, 325-340.CrossRefGoogle Scholar
  30. 30.
    S. Mandal, J. Panda, T.K. Nath, J. Alloys Compd. 2015, 653, 453-459.CrossRefGoogle Scholar
  31. 31.
    Y.Motome, N. Furulawa, J. Phys. Soc. Jpn. 2001, 70, 1487-1490.CrossRefGoogle Scholar
  32. 32.
    K. Ghosh, C. J. Lobb, R. L. Greene, S. G. Karabashev, D. A. Shulyatev, A. A. Arsenov, Y. Mukovskii, Phys. Rev. Lett. 1998, 81, 4740-4743.CrossRefGoogle Scholar
  33. 33.
    B Padmanabhan, HL Bhat, S Elizabeth, S Rößler, UK Rößler, K Dörr, KH Müller (2007) Phys. Rev. B:75:7.CrossRefGoogle Scholar
  34. 34.
    L. Chen, J. H. He, Y. Mei, Y. Z. Cao, W. W. Xia, H. F. Xu, Z. W. Zhu, Z. A. Xu, Physica B 404 (2009) 1879-1882.CrossRefGoogle Scholar
  35. 35.
    M. Ziese, J. Phys. Condens. Matter 2001, 13, 2919-2934.CrossRefGoogle Scholar
  36. 36.
    D Kim, BL Zink, F Hellman, JMD Coey (2002) Phys. Rev. B 65:7.Google Scholar
  37. 37.
    R. A. Young, the Rietveld Method, 1st ed, Oxford University Press, New York, 1993, pp 12-24.Google Scholar
  38. 38.
    A. Belkahla, K. Cherif, J. Dhahri, E. K. Hlil, J. Alloys Compd. 2017, 715, 266 -274.CrossRefGoogle Scholar
  39. 39.
    P. T. Phong, L. T. Duy, L. V. Bau, N. V. Dang, D. H. Manh, In-Ja Lee, J Electroceram. 2016, 36, 58-64.CrossRefGoogle Scholar
  40. 40.
    A. Arrott and J. E. Noakes, Phys. Rev. Lett. 1967, 19, 786-789.CrossRefGoogle Scholar
  41. 41.
    B. K. Banerjee, Phys. Lett. 1964, 12, 16-17.CrossRefGoogle Scholar
  42. 42.
    L Zhang, H Han, M Ge, H Du, C Jin, W Wei, J Fan, C Zhang, L Pi, Y Zhang (2016) Sci. Rep.  https://doi.org/10.1038/srep22397.Google Scholar
  43. 43.
    J Fan, L Ling, B Hong, L Zhang, L Pi, Y Zhang (2010) Phys. Rev. B 81:6.Google Scholar
  44. 44.
    J. S. Kouvel and M. E. Fisher, Phys. Rev. 1964, 136, A1626-A1632.CrossRefGoogle Scholar
  45. 45.
    M. Seeger, S. N. Kaul, H. Kronmuller, R. Reisser, Phys. Rev. B 1995, 51, 12585-12594.CrossRefGoogle Scholar
  46. 46.
    D Kim, B Revaz, BL Zink, F Hellman, JJ Rhyne, JE Mitchell (2002) Phys. Rev. Lett. 89:4.Google Scholar
  47. 47.
    N. V. Khiem, P. T. Phong, L. V. Bau, D. N. H. Nam, L. V. Hong, N. X. Phuc, J. Magn. Magn. Mater. 2009, 321, 2027-2031.CrossRefGoogle Scholar
  48. 48.
    V Franco, A Conde, MD Kuzmin, JM Romero-Enrique (2009) J. Appl. Phys. 105: 3.CrossRefGoogle Scholar
  49. 49.
    M. Hazzez, N. Ihzaz, M. Boudard, M. Oumezzine, Physica B 2015, 468-469, 39-44.CrossRefGoogle Scholar
  50. 50.
    I Sfifir, N OuledNasser, H BenKhlifa, W Cheikhrouhou-Koubaa, M Koubaa, A Cheikhrouhou (2016) Ceram. Inter. 42:12956-12963.CrossRefGoogle Scholar
  51. 51.
    N Khan, P Mandal, K Mydeen, D Prabhakaran (2012) Phys. Rev. B 85:12.CrossRefGoogle Scholar
  52. 52.
    R Mnassri, N Chniba-Boudjada, A Cheikhrouhou (2015) J. Alloys Compd. 640:183-192.CrossRefGoogle Scholar
  53. 53.
    H. Oesterreicher and F. T. Parker, J. Appl. Phys. 1984, 55, 4334-4438.CrossRefGoogle Scholar
  54. 54.
    V Franco, R CaballeroFlores, A Conde, KE Knipling, MA Willard (2011) J. Appl. Phys 109:3.Google Scholar
  55. 55.
    QY Dong, HW Zhang, JR Sun, BG Shen, V Franco (2008) J. Appl. Phys. 103:3.Google Scholar
  56. 56.
    T. –L. Phan, Q. T. Tran, P. Q. Thanh, P. D. H. Yen, T. D. Thanh, S. C. Yu, Solid State Commun. 2014, 184, 40-46.CrossRefGoogle Scholar
  57. 57.
    CM Bonilla, J Herrero-Albillos, F Bartolome, LM Garcia, M Parra-Borderias, V Franco (2010) Phys. Rev. B 81:7.CrossRefGoogle Scholar
  58. 58.
    V Franco, JS Blazquez, A Conde (2006) Appl. Phys. Lett. 89:3.CrossRefGoogle Scholar
  59. 59.
    L. Xu, J. Fan, Y. Zhu, Y. Shi, L. Zhang, L. Pi, Y. Zhang, D. Shi, Mater. Res. Bull. 2016, 73, 187-191.CrossRefGoogle Scholar
  60. 60.
    A. M. Tishin, Y. I. Spichin, The Magnetocaloric Effect and its Applications, 2nd ed., IOP Publishing, London, 2003, pp 45-47.CrossRefGoogle Scholar
  61. 61.
    J. S. Amaral, N. J. O. Silva, V. S. Amaral, J. Magn. Magn. Mater. 2010, 322, 1569-1571.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • P. T. Phong
    • 1
    • 2
    Email author
  • L. T. T. Ngan
    • 3
    • 4
  • L. V. Bau
    • 5
  • N. M. An
    • 5
  • L. T. H. Phong
    • 6
  • N. V. Dang
    • 4
  • In-Ja Lee
    • 7
    Email author
  1. 1.Theoretical Physics Research GroupTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Graduate University of Science and TechnologyVietnam Academy of Science and TechnologyHanoiVietnam
  4. 4.Department of Physics and TechnologyThai Nguyen University of ScienceThai Nguyen CityVietnam
  5. 5.Hong Duc UniversityThanh Hoa CityVietnam
  6. 6.Institute of Materials ScienceVietnam Academy of Science and TechnologyHa NoiVietnam
  7. 7.Department of Advanced Materials ChemistryDongguk University-GyeongjuGyeongju-SiKorea

Personalised recommendations