Metallurgical and Materials Transactions A

, Volume 48, Issue 12, pp 6142–6152 | Cite as

Effect of Cooling Rate on Precipitation Behavior and Micromechanical Properties of Ferrite in V-N Alloyed Steel During a Simulated Thermomechanical Process

  • Jing Zhang
  • Fu-Ming Wang
  • Zhan-Bing Yang
  • Chang-Rong Li
Article
  • 291 Downloads

Abstract

The effect of the cooling rate after finish deformation at 1223 K (950 °C) on the microstructural evolution, V(C,N) precipitation, and micromechanical properties of ferrite in high-N V-alloyed building steel was comparatively investigated using a Gleeble-1500 thermomechanical simulator. Metallographic analysis shows that polygonal ferrite (PF) and pearlite (P) were dominant microconstituents at cooling rates ranging from 0.5 K/s to 3 K/s (0.5 °C/s to 3 °C/s). As the cooling rate increased within this range, the average ferrite grain size decreased from 6.1 ± 0.30 to 4.4 ± 0.25 μm. Besides, the sheet spacing of interphase precipitated V(C,N) particles decreased from 64.0 to 78.7 to 21.9 to 24.5 nm, and the average size of randomly precipitated particles was refined from 8.2 ± 3.24 to 6.3 ± 2.18 nm. The number density of precipitates with a size below and above 10 nm decreased, and the total number density decreased from 2482 ± 430 to 1699 ± 142 μm−2. Moreover, high-resolution transmission electron microscopy (HRTEM) observation revealed that there exists a coherent interface between the nanoscaled V(C,N) particle and the ferrite matrix. This interface lowered the nucleation energy barrier and promoted the V(C,N) particle precipitation in the ferrite matrix. Nanoindentation measurements indicated that the ferrite phase became softer, and the corresponding value of nanohardness and Young’s modulus decreased as the cooling rate increased, which was caused predominantly by the decrease in precipitation hardening due to the lower number density of V(C,N) precipitates.

Notes

Acknowledgments

This work is financially supported by the National Science Foundation of China (Grant No. 51674020).

References

  1. 1.
    1. A.I. Zaky, A. El-Morsy, and T. El-Bitar: J. Mater. Process. Technol., 2009, vol. 209, pp. 1565–69.CrossRefGoogle Scholar
  2. 2.
    2. S.M. Zhang, K. Liu, H. Chen, X.P. Xiao, Q.F. Wang, and F.C. Zhang: Mater. Sci. Eng. A, 2016, vol. 651, pp. 951–60.CrossRefGoogle Scholar
  3. 3.
    3. S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, and S. Jansto: Mater. Sci. Eng. A, 2007, vol. 460, pp. 335–43.CrossRefGoogle Scholar
  4. 4.
    4. J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra: Mater. Sci. Eng. A, 2013, vol. 585, pp. 197–204.CrossRefGoogle Scholar
  5. 5.
    5. J. Hu, L.X. Du, J.J. Wang, and C.R. Gao: Mater. Sci. Eng. A, 2013, vol. 577, pp. 161–68.CrossRefGoogle Scholar
  6. 6.
    6. Z.R. Shi, R.Z. Wang, H. Su, F. Chai, Q.F. Wang, and C.F. Yang: Mater. Des., 2016, vol. 96, pp. 241–50.CrossRefGoogle Scholar
  7. 7.
    7. J. Nikolaou and G.D. Papadimitriou: Constr. Build. Mater., 2004, vol. 18, pp. 243–54.CrossRefGoogle Scholar
  8. 8.
    8. S. Ghosh and S. Mula: Mater. Sci. Eng. A, 2015, vol. 646, pp. 218–33.CrossRefGoogle Scholar
  9. 9.
    9. F.Z. Bu, X.M. Wang, S.W. Yang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2015, vol. 620, pp. 22–29.CrossRefGoogle Scholar
  10. 10.
    10. J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, and G.D. Wang: Mater. Sci. Eng. A, 2014, vol. 594, pp. 389–93.CrossRefGoogle Scholar
  11. 11.
    11. X.L. Li, Z.D. Wang, X.T. Deng, Y.J. Zhang, C.S. Lei, and G.D. Wang: Acta Mater. Sinica, 2015, vol. 51, pp. 784–90.Google Scholar
  12. 12.
    12. J. Zhang, F.M. Wang, Z.B. Yang, and C.R. Li: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 6621–31.CrossRefGoogle Scholar
  13. 13.
    13. J.G. Jung, J.S. Park, J. Kim, and Y.K. Lee: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5529–35.CrossRefGoogle Scholar
  14. 14.
    14. R. Stasko, H. Adrian, and A. Adrian: Mater. Charact., 2006, vol. 56, pp. 340–47.CrossRefGoogle Scholar
  15. 15.
    15. S.F. Medina, M. Gómez, and L. Rancel: Scripta Mater., 2008, vol. 58, pp. 1110–13.CrossRefGoogle Scholar
  16. 16.
    16. C. Capdevila, C. García-Mateo, J. Cornide, J. Chao, and F.G. Caballero: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3743–51.CrossRefGoogle Scholar
  17. 17.
    17. P. Gong, E.J. Palmiere, and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp. 392–403.CrossRefGoogle Scholar
  18. 18.
    18. G. Miyamoto, R. Hori, B. Poorganji, and T. Furuhara: ISIJ Int., 2011, vol. 51, pp. 1733–39.CrossRefGoogle Scholar
  19. 19.
    19. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda: ISIJ Int., 2004, vol. 44, pp. 1945–51.CrossRefGoogle Scholar
  20. 20.
    20. M.Y. Chen, M. Gouné, M. Verdier, Y. Bréchet, and J.R. Yang: Acta Mater., 2014, vol. 64, pp. 78–92.CrossRefGoogle Scholar
  21. 21.
    21. S.H.M. Azghandi, V.G. Ahmadabadi, I. Raoofian, F. Fazeli, M. Zare, A. Zabett, and H. Reihani: Mater. Des., 2015, vol. 88, pp. 751–58.CrossRefGoogle Scholar
  22. 22.
    22. W.J. Hui, Y.J. Zhang, C.W. Shao, S.L. Chen, X.L. Zhao, and H. Dong: J. Mater. Sci. Technol., 2016, vol. 32, pp. 545–51.CrossRefGoogle Scholar
  23. 23.
    23. M. Gomez, L. Rancel, E. Escudero, and S.F. Medina: J. Mater. Sci. Technol., 2014, vol. 30, pp. 511–16.CrossRefGoogle Scholar
  24. 24.
    24. F.Z. Bu, X.M. Wang, L. Chen, S.W. Yang, C.J. Shang, and R.D.K. Misra: Mater. Charact., 2015, vol. 102, pp. 146–55.CrossRefGoogle Scholar
  25. 25.
    25. H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang: Acta Mater., 2011, vol. 59, pp. 6264–74.CrossRefGoogle Scholar
  26. 26.
    26. Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, T. Ohmura, T. Suzuki, and K. Tsuzaki: Acta Mater., 2015, vol. 84, pp. 375–84.CrossRefGoogle Scholar
  27. 27.
    27. C.E.I.C. Ohlund, E. Schlangen, and S.E. Offerman: Mater. Sci. Eng. A, 2013, vol. 560, pp. 351–57.CrossRefGoogle Scholar
  28. 28.
    28. W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.CrossRefGoogle Scholar
  29. 29.
    29. S. Zajac, T. Siwecki, W.B. Hutchinson, and R. Lagneborg: ISIJ Int., 1998, vol. 38, pp. 1130–39.CrossRefGoogle Scholar
  30. 30.
    30. X.L. Li and Z.D. Wang: J. Northeast Univ., 2015, vol. 36, pp. 1701–05.Google Scholar
  31. 31.
    31. R.W.K. Honeycombe and R.F. Mehl: Metall. Trans. A, 1976, vol. 7A, pp. 915–36.CrossRefGoogle Scholar
  32. 32.
    32. M.D.M.A. Bepari: Metall. Trans. A, 1990, vol. 21A, pp. 2839–55.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Jing Zhang
    • 1
    • 2
  • Fu-Ming Wang
    • 1
    • 2
  • Zhan-Bing Yang
    • 1
    • 2
  • Chang-Rong Li
    • 3
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingP.R. China
  3. 3.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingP.R. China

Personalised recommendations