Advertisement

Metallurgical and Materials Transactions A

, Volume 48, Issue 10, pp 4842–4856 | Cite as

Correlation of Microstructure and Texture in a Two-Phase High-Mn Twinning-Induced Plasticity Steel During Cold Rolling

  • Mohammad Ashiq
  • Pushkar Dhekne
  • Atef Saad Hamada
  • Puspendu Sahu
  • B. Mahato
  • R. K. Minz
  • Sandip Ghosh Chowdhury
  • L. Pentti Karjalainen
Article

Abstract

The evolution of microstructure and texture of a two-phase austenite-ferrite twinning-induced plasticity steel during cold rolling was investigated and different deformation mechanisms were found to become active with increasing thickness reductions. Optical microscopy showed the formation of brass-type shear bands across several austenite grains at reductions greater than 50 pct. TEM observations reveal the presence of deformation twinning in austenite. The austenite phase initially shows the Cu-type texture, i.e., Cu {1 1 2}〈1 1 1〉, Goss {0 1 1}〈1 0 0〉 with a spread toward Brass {1 1 0}〈1 1 2〉. With continued cold rolling, the Cu {1 1 2}〈1 1 1〉 component moves toward CuT component {552}〈115〉 and the other two components increase in intensity. There is also emergence of {111} fiber after 90 pct cold rolling. The ferrite phase exhibits the evolution of ND-rotated Cube component {001}〈110〉 along with 〈110〉 fiber at lower as well as at higher rolling reductions. An exception is at 75 pct reduction, when the ferrite texture contains {111} fiber in place of 〈110〉 fiber with a weak rotated-Cube component. Phase fraction analysis by X-ray diffraction indicates a decrease in the austenite fraction up to 75 pct reduction followed by an increase at 90 pct reduction. After 90 pct cold rolling, the phase fraction is similar to that of the “as-received” state. Elongated grains of ferrite phase in finer dimensions after 90 pct cold rolling indicate softening within that phase; at similar stage, there are finer scale austenite grains mostly at the grain boundaries. The above has been suggested to be related with the adiabatic heating during cold rolling due to the high strain hardening of the austenite phase.

Notes

Acknowledgments

Authors (MA, PD, BM, RKM, and SGC) are grateful to Director, CSIR NML Jamshedpur for supporting the work and his kind permission to publish the work. Financial support for the work provided through CSIR Project SIP 025 is acknowledged with gratitude.

References

  1. 1.
    D. Raabe, Acta Mater, 1997, 45, 1137-51;CrossRefGoogle Scholar
  2. 2.
    C. Donadille, R. Valle, P. Dervin and R. Penelle, Acta Metall, 1989, vol. 37, pp1547-1571CrossRefGoogle Scholar
  3. 3.
    G. Frommeyer, U. Brux, O. Newmann, ISIJ Int., 2003, vol. 43, pp 438-436.CrossRefGoogle Scholar
  4. 4.
    S. Allain, J-P. Chateau, O. Bouaziz, Steel Res. Intl., 2002, vol. 73, pp299-302.CrossRefGoogle Scholar
  5. 5.
    B. W. Oh, S. J. Cho, Y. G. Kim, Y. P. Kim, W. S. Kim, S. H. Hong, Mater Sci Eng A, 1995, vol. 197, pp 147-156.CrossRefGoogle Scholar
  6. 6.
    S. Allain, J-P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater Sci Eng A, 2004, vol. 387-389, pp 158-162.CrossRefGoogle Scholar
  7. 7.
    L. Remy and A. Pineau, Mater Sci Engg A, 1977, vol. 28, pp 99-107.CrossRefGoogle Scholar
  8. 8.
    L. Bracke, J. Penning and N. Akdut, Metall Mater. Trans A, 2007, vol. 38A, pp 520-528.CrossRefGoogle Scholar
  9. 9.
    G. Wasserman, Zeit Metallkunde, 1963, 54, 61-65.Google Scholar
  10. 10.
    S. Vercammen, B. Blanpain, B. C. De Cooman, P. Wollants, Acta Mater., 2004, vol. 52, pp 2005-2012.CrossRefGoogle Scholar
  11. 11.
    L. Bracke, K. Verbekan, L. Kestens, J. Penning, Acta Mater., 2009, vol. 57, pp 1512–1524.CrossRefGoogle Scholar
  12. 12.
    E. El-Danaf, S. R. Kalidindi, R. D. Doherty, C. Necker, Acta Mater., 2000, vol. 48, pp 2665-2673.CrossRefGoogle Scholar
  13. 13.
    A. Weidner, P. Klimanek, Scripta Mater., 1998, vol. 38, pp 851-856.CrossRefGoogle Scholar
  14. 14.
    O. Grassel, L. Kruger, G. Frommeyer, L. W. Meyer, Int. J Plasticity, 2000, vol. 16, pp 1391-1409.CrossRefGoogle Scholar
  15. 15.
    O. Bouaziz, C. P. Scott, G. Petitgand, Scripta Mater., 2009, vol. 60, pp 714-716.CrossRefGoogle Scholar
  16. 16.
    J. Yanagimoto, K. Oyamada, T. Nakagawa, CIRP Annals - Manufacturing Technology, 2005, vol. 54, pp 213-216CrossRefGoogle Scholar
  17. 17.
    O. Bouaziz, S. Allaina, C.P. Scott, P. Cugy, D. Barbier, Curr Opin in Solid State Mater Sci, 2011, vol. 15, pp 141–168CrossRefGoogle Scholar
  18. 18.
    O. Grassel and G. Frommeyer, Mater. Sci. Tech., 1998, vol. 14, pp 1213-1217.CrossRefGoogle Scholar
  19. 19.
    T. Leffers and R. K. Ray, Prog Mater Sci, 2009, vol. 54, pp 351-396.CrossRefGoogle Scholar
  20. 20.
    T. Leffers, Mater Sci Forum, 2012, vol. 702-703, pp 216-223.Google Scholar
  21. 21.
    B. J. Duggan, M. Hatherly, W.B. Hutchinson, P.T. Wakefield, Met. Sci., 1978, vol. 12, pp 343-51.CrossRefGoogle Scholar
  22. 22.
    W.B. Hutchinson, B. Duggan, M. Hatherly, Met Technol., 1979, vol. 6, pp 398-403.CrossRefGoogle Scholar
  23. 23.
    C. Hasse, S. Ghosh Chowdhury, L.A. Barles-Mora, D. A. Molodov, G. Gottstein, Metall Mater Trans A, 2013, vol. 44A, pp 911-922CrossRefGoogle Scholar
  24. 24.
    A. A. Saleh, E. V. Pereloma, A. A. Gazdar, Mater Sci Engg. A, 2011, vol. 528, pp 4537-4549.CrossRefGoogle Scholar
  25. 25.
    Y. Lu, D.A. Molodov, G. Gottstein, ISIJ Intl., 2011, vol. 51, pp 812-817.CrossRefGoogle Scholar
  26. 26.
    A.A. Saleh, C. Hasse, E.V.Pereloma, D.A. Molodov, A.A. Gazder, Acta Metall., 2014, vol. 70, pp 259-271.Google Scholar
  27. 27.
    S. Dancette, L.Delanny, K. Renard, M. A. Melchior, P.J. Jacques, Acta Mater, 2012, vol. 60, pp 2135-2145.CrossRefGoogle Scholar
  28. 28.
    P. Van Houtte, S. Li, M. Seefeldt, L. Delannay, Intl. J Plast., 2005, vol. 21, pp 589-624.CrossRefGoogle Scholar
  29. 29.
    N. Gurao, P. Kumar, B. Bhattacharya, A. Haldar, and S. Suwas, Metall. Mater. Trans. A, 2012, vol. 43A, pp 5193–01.CrossRefGoogle Scholar
  30. 30.
    R. A. Lebensohn, C. N. Tome, Acta Metall Mater., 1993, vol. 41, pp 2611-2624.CrossRefGoogle Scholar
  31. 31.
    R. A. Lebensohn, C. N. Tome, Mater Sci Engg. A, 1994, vol. 175, pp 71-82.CrossRefGoogle Scholar
  32. 32.
    C.N. Tome, R.A. Lebensohn, Continuum scale simulation of engineering materials, D. Raabe, F. Rotors, F. Barlat, L.-Q. Chen, eds., Wiley-VCH, Berlin, 2004, pp. 473–76.Google Scholar
  33. 33.
    R.A. Lebensohn, G. R. Canova, Acta Mater., 1997, vol. 45, pp 3687-3694.CrossRefGoogle Scholar
  34. 34.
    D. Mattisen, D. Raabe, F. Heringhaus, Acta Mater., 1999, vol. 47, pp 1627-1634CrossRefGoogle Scholar
  35. 35.
    J. Wang, A. Misra, Curr. Opin. Solid State Mater Sci, 2011, vol. 15, pp 20-28CrossRefGoogle Scholar
  36. 36.
    D. Raabe, K. Mivake, H. Takahara, Mater. Sci Engg. A, 2009, vol. 291, pp 186-197CrossRefGoogle Scholar
  37. 37.
    D. Raabe, S. Ohsaki, K. Hono, Acta Mater., 2009, vol. 57, pp 5254-5263CrossRefGoogle Scholar
  38. 38.
    N. Jia, F. Rotors, P. Eisenlohr, D. Raabe, X. Zhao, Acta Mater., 2013, vol. 61, pp 4591-4606CrossRefGoogle Scholar
  39. 39.
    J. Wang, I.J. Beyerlein, N.A. Mara and D. Bhattacharya, Scripta Mater., 2011, vol. 64, pp 1083-1086;CrossRefGoogle Scholar
  40. 40.
    P.M. Anderson, J.F. Bingert, A. Misra, J.P. Hirth, Acta Mater., 2003, vol. 51, pp 6059-6075CrossRefGoogle Scholar
  41. 41.
    A. Misra, J.P. Hirth, R.G. Hoagland, J.D. Embury, H. Kung, Acta Mater, 2004, vol. 52, pp 2387-2394CrossRefGoogle Scholar
  42. 42.
    A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater., 2006, vol. 53, pp 4817-4824CrossRefGoogle Scholar
  43. 43.
    I.J. Beyerlein, N.A. Mara, D. Bhattacharaya, D.J. Alexander, C.T. Necker, Int. J. Plast., 2011, vol. 27, pp 121-146CrossRefGoogle Scholar
  44. 44.
    I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, A. Misra, Proc. Natl. Acad. Sci., 2014, vol. 111, pp 4386-4390CrossRefGoogle Scholar
  45. 45.
    C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Rotors, D. Raabe, Int. J. Plast., 2014, vol. 63, pp 198-210CrossRefGoogle Scholar
  46. 46.
    J. Moverare and M. Oden, Metall Mater Trans. A, 2002, vol. 33A, pp 57-71.CrossRefGoogle Scholar
  47. 47.
    C. Mapelli, S. Barella and R. Venturin, ISIJ Intl., 2005, vol. 45, pp 1727-1735CrossRefGoogle Scholar
  48. 48.
    H. Inoue, S. Fukwshima, N. Inakazu, Mater Trans JIM, 1992, vol. 33, pp 129-137.CrossRefGoogle Scholar
  49. 49.
    N. Gey, M. Humbert, M. J. Phillip, Y. Combres, Mater. Sci. Eng. A, 1996, vol. 219, pp 80-88CrossRefGoogle Scholar
  50. 50.
    S. Suwas, R. K. Ray, Metall Mater Trans A, 2000, vol. 31A, pp 2339-2350CrossRefGoogle Scholar
  51. 51.
    S. Suwas, R.K. Ray, A.K. Singh, S. Bhagava, Acta Mater., 1999, vol. 47, pp 4585-4598CrossRefGoogle Scholar
  52. 52.
    N.P. Gurao, S. Suwas, Metall Mater Trans A, 2016, doi: 10.1007/s11661-016-3856-1.Google Scholar
  53. 53.
    A. L. Etter, T. Baudin, M. H. Mathon, W. Swiatnicki, R. Penelle, Scripta Mater, 2006, vol. 54, pp 683-688CrossRefGoogle Scholar
  54. 54.
    N. Akdut and J. Foct, Scripta Metall Mater., 1995, vol. 32, pp 103- 108.CrossRefGoogle Scholar
  55. 55.
    J. Keichel, J. Foct and G. Gottstein, ISIJ Intl., 2003, vol. 43, pp 1781-1787.CrossRefGoogle Scholar
  56. 56.
    N. Jia, L. Peng, Y. D. Wang, S. Johansson and P. K. Liaw, Acta Mater., 2008, vol. 56, pp 782-793.CrossRefGoogle Scholar
  57. 57.
    Je Doo Yoo, Kyung-Tae Park, Mater Sci Engg A, 2008, vol. 496, pp 417-424.CrossRefGoogle Scholar
  58. 58.
    G. B. Olson and M. Cohen, Metall Trans A, 1976, vol. 7A, pp 1897-1904.Google Scholar
  59. 59.
    C. Haase, L.A. Barrales-Mora, F. Rotors, D.A. Molodov, G. Gottstein, Acta Mater., 2014, vol. 80, pp 327-340CrossRefGoogle Scholar
  60. 60.
    D.R. Steinmetz, T. Jäpel, R. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed- Akbari, T. Hickel, F. Rotors, D. Raabe, Acta Mater., 2013, vol. 61, pp 494-510CrossRefGoogle Scholar
  61. 61.
    D.A. Molodov, S. Bhaumik, X. Molodova, G. Gottstein, Scripta Mater., 2006, vol. 54, pp 2161-2164.CrossRefGoogle Scholar
  62. 62.
    C. Haase, L.A. Barrales-Mora, D.A. Molodov, G. Gottstein, Mater. Sci. Forum, 2013, vol. 753, pp 213-216CrossRefGoogle Scholar
  63. 63.
    X. Molodova, R. Berghammer, G. Gottstein, R. J. Hellmig, Int J Mater Res (form Z Metallkd) 2007, vol. 98, pp 158–66CrossRefGoogle Scholar
  64. 64.
    Y. Lu, D.A. Molodov, G. Gottstein, Acta Mater, 2011, vol. 59, pp 3229–3243CrossRefGoogle Scholar
  65. 65.
    Y. Lu, D.A. Molodov, G. Gottstein, Mater Sci Forum, 2011, vol. 702–703, pp 443–448.CrossRefGoogle Scholar
  66. 66.
    L.A. Barrales-Mora, Y. Lu, D.A. Molodov, Steel Res Int, 2011, vol. 82, pp 119–126.CrossRefGoogle Scholar
  67. 67.
    L. A. Barrales-Mora, Y. Lu, D.A. Molodov, G. Gottstein, Mater Sci Forum, 2012, vol. 715–716, pp 849–852.CrossRefGoogle Scholar
  68. 68.
    Y. Lu, D.A. Molodov, G. Gottstein, Mater Sci Forum, 2012, vol. 715–716, pp 568–73.CrossRefGoogle Scholar
  69. 69.
    Y. Lu, C. Haase, L.A. Barrales-Mora, D.A. Molodov, Y. Ping, Mater Sci Forum, 2013, vol. 753, pp 177–80.CrossRefGoogle Scholar
  70. 70.
    A.A. Saleh, E. V. Pereloma, A.A. Gazder, Mater Sci Eng A, 2011, vol. 528, pp 4537–49.CrossRefGoogle Scholar
  71. 71.
    H.M. Rietveld, J. Appl. Cryst., 1969, vol. 2, pp 65–71.CrossRefGoogle Scholar
  72. 72.
    R.A. Young, ed. The Rietveld Method, Chapter 1. Oxford University Press, 1995Google Scholar
  73. 73.
    R.J. Hill and C.J. Howard, J. Appl. Cryst., 1987, vol. 20, pp 467–474.CrossRefGoogle Scholar
  74. 74.
    C. D. Singh, Textures and Microstruct., 1993, vol. 22, pp 59-72.CrossRefGoogle Scholar
  75. 75.
    Sandip Ghosh Chowdhury, P.K. De, and Samar Das, Acta Mater., 2005, vol. 53, pp 3951-59.CrossRefGoogle Scholar
  76. 76.
    J. Hirsch, K. Luecke, M. Hatherly, Acta Metall., 1988, vol. 36, pp 2905-2927.CrossRefGoogle Scholar
  77. 77.
    R. E. Smallman and D. Green, Acta Metall., 1964, vol. 12, pp 145-54.CrossRefGoogle Scholar
  78. 78.
    O. Engler, Acta Mater., 2000, vol. 48, pp 4827-4840.CrossRefGoogle Scholar
  79. 79.
    H. Paul, A. Morawiec, A. Piatkowski, E. Bouzy, J. Fundenberger, Metall Mater Trans. A, 2004, vol. 35A, pp 3775-86.CrossRefGoogle Scholar
  80. 80.
    H. O. Asbeck and H. Mecking, Mater. Sci. Engg., 1978, vol. 34, pp 111-19CrossRefGoogle Scholar
  81. 81.
    T. Kamijo and K. Sekine, Metall Trans A, 1970, vol. 1, pp 1287-1292.CrossRefGoogle Scholar
  82. 82.
    D. Hull, Acta Metall., 1961, vol. 9, pp 191-204.CrossRefGoogle Scholar
  83. 83.
    B. Fargette, D. Whitwham, Mem. Sci. Rev. Metall, 1976, vol. 73, pp 197-206.Google Scholar
  84. 84.
    D. Raabe, Acta Mater, 1997, vol. 45, pp 1137-1151.CrossRefGoogle Scholar
  85. 85.
    D. Raabe and K. Luecke, Mater Sci Forum, 1994, vol. 157-162, pp 597-610.CrossRefGoogle Scholar
  86. 86.
    F. Emren, U. von Schlippenbach and K. Luecke, Acta Metall., 1986, vol. 34, pp 2105-2117CrossRefGoogle Scholar
  87. 87.
    D. Raabe, Mater. Sci. Technol., 1995, vol. 11, pp 455-460.CrossRefGoogle Scholar
  88. 88.
    W. B. Hutchinson, Intl. Metal. Rev., 1984, vol. 29, pp 25-42.CrossRefGoogle Scholar
  89. 89.
    T. Yokota, T. Shiraga, M. Niikura, and K. Sato, UFG materials, R.S. Mishra et al., eds., RISO National Laboratory, Roskilde, Denmark, 2001, p. 255.Google Scholar
  90. 90.
    T. Yokota, ISIJ Intl., 2004, vol. 44, pp 1963-1965.CrossRefGoogle Scholar
  91. 91.
    J-Y. Kim, L. Chen, H. –S. Kim, S. –K. Kim, Y. Estrin and B. C. De Cooman, Metall Mater Trans A, 2009, vol. 40A, pp 3147-3158.CrossRefGoogle Scholar
  92. 92.
    P. Sahu, S. Curtze, A. Das, B. Mahato, V-T. Kuokkala, S. Ghosh Chowdhury: Scripta Mater, 2010, vol. 62, pp 5-8.CrossRefGoogle Scholar
  93. 93.
    T. Maki, T. Furuhara, K. Tsuzaki, ISIJ Intl., 2001, vol. 41, pp 571-579.CrossRefGoogle Scholar
  94. 94.
    G. J. Davies, J. S. Kallend and P. P. Morris, Acta Metall., 1976, vol. 24, pp 159-172.CrossRefGoogle Scholar
  95. 95.
    H.-R. Wenk and C. Tomé, J. Geophys. Res., 1999, vol. 104, pp 25513-25527.CrossRefGoogle Scholar
  96. 96.
    E. Kaminski, N.M. Ribe, Earth Planet Sci Lett., 2001, vol. 189, pp 253-267CrossRefGoogle Scholar
  97. 97.
    J. Signorelli and A. Tommasi, Earth Planet Sci Lett., 2015, vol. 430, pp 356-366.CrossRefGoogle Scholar
  98. 98.
    L. Chen, H.S. Kim, S. K. Kim, B.C. De Cooman, ISIJ Intl., 2007, vol. 47, pp 1804–12CrossRefGoogle Scholar
  99. 99.
    Z.P. Xiong, X.P. Ren, W.P. Bao, S.X. Li, H.T. Qu, Mater. Sci. Eng. A, 2011, vol. 530, pp. 426–431CrossRefGoogle Scholar
  100. 100.
    D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed- Akbari, T. Hickel, F. Rotors, D. Raabe, Acta Mater., 2013, vol. 61, pp 494-510.CrossRefGoogle Scholar
  101. 101.
    F. Rotors, D. Raabe, G. Gottstein, Acta Mater., 2000, vol. 48, pp 4181-4189CrossRefGoogle Scholar
  102. 102.
    M. Goerdeler, M. Crumbach, M. Schneider, G. Gottstein, L. Neumann, H. Aretz, R. Kopp, Mater Sci Engg A, 2004, vol. 387-389, pp 266-271CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Mohammad Ashiq
    • 1
    • 2
    • 6
  • Pushkar Dhekne
    • 1
    • 7
  • Atef Saad Hamada
    • 3
  • Puspendu Sahu
    • 4
  • B. Mahato
    • 1
  • R. K. Minz
    • 1
  • Sandip Ghosh Chowdhury
    • 1
  • L. Pentti Karjalainen
    • 5
  1. 1.Materials Engineering DivisionCSIR National Metallurgical LaboratoryJamshedpurIndia
  2. 2.CSIR Advanced Materials and Processes Research InstituteBhopalIndia
  3. 3.Department of Materials Science and EngineeringEgypt–Japan University of Science and TechnologyAlexandriaEgypt
  4. 4.Department of PhysicsJadavpur UniversityKolkataIndia
  5. 5.Centre for Advanced Steels ResearchUniversity of OuluOuluFinland
  6. 6.Indian Institute of TechnologyKanpurIndia
  7. 7.Bharat Aluminium Co Ltd.KorbaIndia

Personalised recommendations