Skip to main content
Log in

Influence of Transformation Plasticity on the Distribution of Internal Stress in Three Water-Quenched Cylinders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Based on the hardenability of three medium carbon steels, cylinders with the same 60-mm diameter and 240-mm length were designed for quenching in water to obtain microstructures, including a pearlite matrix (Chinese steel mark: 45), a bainite matrix (42CrMo), and a martensite matrix (40CrNiMo). Through the combination of normalized functions describing transformation plasticity (TP), the thermo-elasto-plastic constitutive equation was deduced. The results indicate that the finite element simulation (FES) of the internal stress distribution in the three kinds of hardenable steel cylinders based on the proposed exponent-modified (Ex-Modified) normalized function is more consistent with the X-ray diffraction (XRD) measurements than those based on the normalized functions proposed by Abrassart, Desalos, and Leblond, which is attributed to the fact that the Ex-Modified normalized function better describes the TP kinetics. In addition, there was no significant difference between the calculated and measured stress distributions, even though TP was taken into account for the 45 carbon steel; that is, TP can be ignored in FES. In contrast, in the 42CrMo and 40CrNiMo alloyed steels, the significant effect of TP on the residual stress distributions was demonstrated, meaning that TP must be included in the FES. The rationality of the preceding conclusions was analyzed. The complex quenching stress is a consequence of interactions between the thermal and phase transformation stresses. The separated calculations indicate that the three steels exhibit similar thermal stress distributions for the same water-quenching condition, but different phase transformation stresses between 45 carbon steel and alloyed steels, leading to different distributions of their axial and tangential stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. M. Jung, M. Kang, and Y.K. Lee: Acta Mater., 2012, vol. 60, pp. 525–36.

    Article  Google Scholar 

  2. R. Isomura and H. Sato: J. Jpn. Inst. Met., 1961, vol. 25, pp. 360–64.

    Article  Google Scholar 

  3. H. Scott: Scientific Papers of the Bureau of Standards, 1925, vol. 20, pp. 399–444.

    Article  Google Scholar 

  4. M.G. Moore and W.P. Evans: SAE Trans., 1958, vol. 66, pp. 340–45.

    Google Scholar 

  5. T. Inoue and K. Arimoto: J. Mater. Eng. Performance, 1997, vol. 6, pp. 51–60.

    Article  Google Scholar 

  6. S. Denis, S. Sjöström, and A. Simon: Metall. Trans. A, 1987, vol. 18A, pp. 1203–12.

    Article  Google Scholar 

  7. H.H. Bok, J.W. Choi, D.W. Suh, M.G. Lee, and F. Barlat: Int. J. Plast., 2015, vol. 73, pp. 142–70.

    Article  Google Scholar 

  8. M.G. Lee, S.J. Kim, H.N. Han, and W.C. Jeong: Int. J. Plast., 2009, vol. 25, pp. 1726–58.

    Article  Google Scholar 

  9. E.A. Ariza, M.A. Martorano, N.B. de Lima, and A.P. Tschiptschin: ISIJ Int., 2014, vol. 54, pp. 1396–1405.

    Article  Google Scholar 

  10. L. Taleb, N. Cavallo, and F. Waeckel: Int. J. Plast., 2001, vol. 17, pp. 1–20.

    Article  Google Scholar 

  11. G.W. Greenwood and R.H. Johnson: Proc. R. Soc. London A, 1965, vol. 283, pp. 403–22.

    Article  Google Scholar 

  12. H.N. Han and J.K. Lee: ISIJ Int., 2002, vol. 42, pp. 200–05.

    Article  Google Scholar 

  13. T. Inoue and H. Wakamatsu: Strojarstvo, 2011, vol. 53, pp. 11–18.

    Google Scholar 

  14. S. Denis, E. Gautier, A. Simon, and G. Beck: Mater. Sci. Technol., 1985, vol. 1, pp. 805–14.

    Article  Google Scholar 

  15. K.F. Wang, S. Chandrasekar, and H.T.Y. Yang: J. Manuf. Sci. Eng., 1997, vol. 119, pp. 257–65.

    Article  Google Scholar 

  16. Y. Nagasaka, J.K. Brimacombe, E.B. Hawbolt, I.V. Samarasekera, B. Hernandez-Morales, and S.E. Chidiac: Metall. Trans. A, 1993, vol. 24A, pp. 795–808.

    Article  Google Scholar 

  17. Y. Liu, S. Qin, Q. Hao, N. Chen, X. Zuo, and Y. Rong: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1402–13.

    Article  Google Scholar 

  18. B.L. Ferguson, Z. Li, and A.M. Freborg: Comput. Mater. Sci., 2005, vol. 34, pp. 274–81.

    Article  Google Scholar 

  19. D.Y. Ju, R. Mukai, and T. Sakamaki: Int. Heat Treat. Surf. Eng., 2011, vol. 5, pp. 65–68.

    Article  Google Scholar 

  20. D. Lambert and K. Arimoto: Finite Element Analysis of Internal Stresses in Quenched Steel Cylinders: 19th ASM Heat Treating Society Conf. Proc. Including Steel Heat Treating in the New Millennium, 1999, pp. 425–34.

  21. X.W. Zuo, N.L. Chen, F. Gao, and Y.H. Rong: Int. Heat Treat. Surf. Eng., 2014, vol. 8, pp. 15–23.

    Article  Google Scholar 

  22. Non-Destructive Testing—Test Method for Residual Stress Analysis by X-ray Diffraction, European Standard EN15305, 2008.

  23. J.B. Leblond, G. Mottet, J. Devaux, and J.C. Devaux: Mater. Sci. Technol., 1985, vol. 1, pp. 815–22.

    Article  Google Scholar 

  24. M.G. Lee, S.J Kim, and H.N. Han: Int. J. Plast., 2010, vol. 26, pp. 688–710.

    Article  Google Scholar 

  25. A. Bejan and Allan D. Kraus: Heat Transfer Handbook, Wiley, Hoboken, NJ, 2003, pp. 165–67.

    Google Scholar 

  26. M.E. Kakhki, A. Kermanpur, and M.A. Golozar: Modell. Simul. Mater. Sci. Eng., 2009, vol. 17, p. 045007.

    Article  Google Scholar 

  27. S.J. Lee and Y.K. Lee: Acta Mater., 2008, vol. 56, pp. 1482–90.

    Article  Google Scholar 

  28. S.J. Lee: Adv. Mater. Res., 2013, vols. 798–799, pp. 39–44.

    Google Scholar 

  29. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  30. S.M.C. van Bohemen and J. Sietsma: Mater. Sci. Technol., 2009, vol. 25, pp. 1009–12.

    Article  Google Scholar 

  31. J.B. Austin and R.L. Rickett: Trans. Am. Inst. Min. Metall. Eng., 1939, vol. 135, pp. 396–415.

    Google Scholar 

  32. George F. Vander Voort: Atlas of Time-Temperature Diagrams for Irons and Steels, ASM INTERNATIONAL, Materials Park, OH, 1991, p. 140.

    Google Scholar 

  33. J.S. Kirkaldy and D. Venugopalan: in Phase Transformation in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp. 126–47.

  34. V.E. Scheil: Arch. Eisenhüttenwes., 1935, vol. 12, pp. 565–67.

    Article  Google Scholar 

  35. F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter: Int. J. Plast., 2000, vol. 16, pp. 723–48.

    Article  Google Scholar 

  36. F.D. Fischer, Q.P. Sun, and K. Tanaka: Appl. Mech. Rev., 1996, vol. 49, pp. 317–64.

    Article  Google Scholar 

  37. C.C. Liu, K.F. Yao, X.J. Xu, and Z. Liu: Mater. Sci. Technol., 2001, vol. 17, pp. 983–88.

    Article  Google Scholar 

  38. G.T. Houlsby and A.M. Puzrin: Principles of Hyperplasticity, Springer, London, 2007, pp. 13–33.

    Google Scholar 

  39. S. Petit-Grostabussiat, L. Taleb, and J.F. Jullien: Int. J. Plast., 2004, vol. 20, pp. 1371–86.

    Article  Google Scholar 

  40. J.B. Leblond, G. Mottet, and J.C. Devaux: J. Mech. Phys. Solids, 1986, vol. 34, pp. 411–32.

    Article  Google Scholar 

  41. R. Schröder: Mater. Sci. Technol., 1985, vol. 1, pp. 754–64.

    Article  Google Scholar 

  42. K.O. Lee, J.M. Kim, M.H. Chin, and S.S. Kang: J. Mater. Process. Technol., 2007, vol. 182, pp. 65–72.

    Article  Google Scholar 

  43. H.S. Yu: Plasticity and Geotechnics, Springer, Boston, MA, 2006, pp. 492–93.

    Google Scholar 

  44. X. Luo and G.E. Totten: J. ASTM Int., 2011, vol. 8, p. JAI103397.

  45. M. Narazaki, G.E. Totten, and G.M. Webster: in Handbook of Residual Stress and Deformation of Steel, G.E. Totten, M. Howes, and T. Inoue, eds., Materials Park, OH, 2002, pp. 248–95.

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51371117 and 51401121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nailu Chen.

Additional information

Manuscript submitted February 12, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Qin, S., Zhang, J. et al. Influence of Transformation Plasticity on the Distribution of Internal Stress in Three Water-Quenched Cylinders. Metall Mater Trans A 48, 4943–4956 (2017). https://doi.org/10.1007/s11661-017-4230-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4230-7

Navigation