Metallurgical and Materials Transactions A

, Volume 48, Issue 9, pp 4097–4110 | Cite as

The Yttrium Effect on Nanoscale Structure, Mechanical Properties, and High-Temperature Oxidation Resistance of (Ti0.6Al0.4)1–xYxN Multilayer Coatings

  • Jingxian Wang
  • Mohammad Arab Pour Yazdi
  • Fernando Lomello
  • Alain Billard
  • András Kovács
  • Frédéric Schuster
  • Claude Guet
  • Timothy J. White
  • Yves Wouters
  • Céline Pascal
  • Frédéric Sanchette
  • ZhiLi Dong
Article
  • 122 Downloads

Abstract

As machine tool coating specifications become increasingly stringent, the fabrication of protective titanium aluminum nitride (Ti-Al-N) films by physical vapor deposition (PVD) is progressively more demanding. Nanostructural modification through the incorporation of metal dopants can enhance coating mechanical properties. However, dopant selection and their near-atomic-scale role in performance optimization is limited. Here, yttrium was alloyed in multilayered Ti-Al-N films to tune microstructures, microchemistries, and properties, including mechanical characteristics, adhesion, wear resistance, and resilience to oxidation. By regulating processing parameters, the multilayer period (Λ) and Y content could be adjusted, which, in turn, permitted tailoring of grain nucleation and secondary phase formation. With the composition fixed at x = 0.024 in (Ti0.6Al0.4)1–xYxN and Λ increased from 5.5 to 24 nm, the microstructure transformed from acicular grains with 〈111〉 preferred orientation to equiaxed grains with 〈200〉 texture, while the hardness (40.8 ± 2.8 GPa to 29.7 ± 4.9 GPa) and Young’s modulus (490 ± 47 GPa to 424 ± 50 GPa) concomitantly deteriorated. Alternately, when Λ = 5.5 nm and x in (Ti0.6Al0.4)1–xYxN was raised from 0 to 0.024, the hardness was enhanced (28.7 ± 7.3 GPa to 40.8 ± 2.8 GPa) while adhesion and wear resistance were not compromised. The Ti-Al-N adopted a rock-salt type structure with Y displacing either Ti or Al and stabilizing a secondary wurtzite phase. Moreover, Y effectively retarded coating oxidation at 1073 K (800 °C) in air by inhibiting grain boundary oxygen diffusion.

Supplementary material

11661_2017_4187_MOESM1_ESM.tif (4.3 mb)
Supplementary material 1HRTEM with indexed FFT of the 2.4 at% Y coating with Λ = 24nm shows the existence of wurtzite phase (TIFF 4399 kb)
11661_2017_4187_MOESM2_ESM.tif (3.3 mb)
Supplementary material 2Al, Ti and Y line profiles by EDS for 2.4 at% Y coatings with average Λ of (a) 5.5 nm, (b) 8 nm, (c) 13 nm and (d) 24 nm (TIFF 3391 kb)
11661_2017_4187_MOESM3_ESM.tif (2.9 mb)
Supplementary material 3SEM and EDX element profiles along thickness direction of the 1.2 at% Y coating cross-section (TIFF 2999 kb)

References

  1. 1.
    A. Hörling, L. Hultman, M. Odén, J. Sjölén, and L. Karlsson: Surf. Coating Technol., 2005, vol. 191, pp. 384–92.CrossRefGoogle Scholar
  2. 2.
    H. Ichimura and A. Kawana: J. Mater. Res., 1993, vol. 8, pp. 1093–1100.CrossRefGoogle Scholar
  3. 3.
    W. Kalss, A. Reiter, V. Derflinger, C. Gey, and J.L. Endrino: Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 399–404.CrossRefGoogle Scholar
  4. 4.
    Birol Y (2011) Mater Sci Eng A 528: 8402–09CrossRefGoogle Scholar
  5. 5.
    Y.H. Zhao, L. Hu, G.Q. Lin, J.Q. Xiao, C. Dong, and B.H. Yu: Int. J. Refract. Met. Hard Mater., 2012, vol. 32, pp. 27–32.CrossRefGoogle Scholar
  6. 6.
    N.J.M. Carvalho, E. Zoestbergen, B.J. Kooi, and J.T.M. De Hosson: Thin Solid Films, 2003, vol. 429, pp. 179–89.CrossRefGoogle Scholar
  7. 7.
    J.M. Cairney, S.G. Harris, P.R. Munroe, and E.D. Doyle: Surf. Coat. Technol., 2004, vol. 183, pp. 239–46.CrossRefGoogle Scholar
  8. 8.
    M.K. Samani, X.Z. Ding, N. Khosravian, B. Amin-Ahmadi, Yang Yi, G. Chen, E.C. Neyts, A. Bogaerts, and B.K. Tay: Thin Solid Films, 2015, vol. 578, pp. 133–38.CrossRefGoogle Scholar
  9. 9.
    M. Arab Pour Yazdi, F. Lomello, J. Wang, F. Sanchette, Z. Dong, T. White, Y. Wouters, F. Schuster, and A. Billard: Vacuum, 2014, vol. 109, pp. 43–51.CrossRefGoogle Scholar
  10. 10.
    M. Keunecke, C. Stein, K. Bewilogua, W. Koelker, D. Kassel, and H. van den Berg: Surf. Coat. Technol., 2010, vol. 205, pp. 1273–78.CrossRefGoogle Scholar
  11. 11.
    G.S. Fox-Rabinovich, A.I. Kovalev, M.H. Aguirre, B.D. Beake, K. Yamamoto, S.C. Veldhuis, J.L. Endrino, D.L. Wainstein, and A.Y. Rashkovskiy: Surf. Coat. Technol., 2009, vol. 204, pp. 489–96.CrossRefGoogle Scholar
  12. 12.
    Z. Zhou, W.M. Rainforth, D.B. Lewis, S. Creasy, J.J. Forsyth, F. Clegg, A.P. Ehiasarian, P.E. Hovespian, and W.D. Münz: Surf. Coat. Technol., 2004, vols. 177–178, pp. 198–203.CrossRefGoogle Scholar
  13. 13.
    Martin Moser, Daniel Kiener, Christina Scheu, and Paul H. Mayrhofer: Materials, 2010, vol. 3, p. 1573.CrossRefGoogle Scholar
  14. 14.
    R. Rachbauer, A. Blutmager, D. Holec, and P.H. Mayrhofer: Surf. Coat. Technol., 2012, vol. 206, pp. 2667–72.CrossRefGoogle Scholar
  15. 15.
    Lihui Zhu, Yumeng Zhang, Wangyang Ni, and Yixiong Liu: Surf. Coat. Technol., 2013, vol. 214, pp. 53–58.CrossRefGoogle Scholar
  16. 16.
    H. Riedl, D. Holec, R. Rachbauer, P. Polcik, R. Hollerweger, J. Paulitsch, and Paul H. Mayrhofer: Surf. Coat. Technol., 2013, vol. 235, pp. 174–80.CrossRefGoogle Scholar
  17. 17.
    Richard Rachbauer, David Holec, Martina Lattemann, Lars Hultman, and Paul H. Mayrhofer: Int. J. Mater. Res., 2011, vol. 102, pp. 735–42.CrossRefGoogle Scholar
  18. 18.
    M. Moser and P.H. Mayrhofer, Scripta Mater. 2007, vol. 57, pp. 357-60.CrossRefGoogle Scholar
  19. 19.
    L. Székely, G. Sáfrán, V. Kis, Z.E. Horváth, P.H. Mayrhofer, M. Moser, G. Radnóczi, F. Misják, and P.B. Barna: Surf. Coat. Technol., 2014, vol. 257, pp. 3–14.CrossRefGoogle Scholar
  20. 20.
    C. Ducros, C. Cayron, and F. Sanchette: Surf. Coat. Technol., 2006, vol. 201, pp. 136–42.CrossRefGoogle Scholar
  21. 21.
    W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.CrossRefGoogle Scholar
  22. 22.
    H. Bückle: Metall. Rev., 1959, vol. 4, pp. 49–100.CrossRefGoogle Scholar
  23. 23.
    F. Toscan, Laurent Antoni, Yves Wouters, M. Dupeux, and Alain Galerie: Mater. Sci. Forum, 2004, vol. 461, pp. 705–12.CrossRefGoogle Scholar
  24. 24.
    G.B. Harris: London Edinb. Dubl. Phil. Mag., 1952, vol. 43, pp. 113–23.CrossRefGoogle Scholar
  25. 25.
    Joshua Pelleg, L.Z. Zevin, S. Lungo, and N. Croitoru: Thin Solid Films, 1991, vol. 197, pp. 117–28.CrossRefGoogle Scholar
  26. 26.
    U.C. Oh and Jung Ho Je: J. Appl. Phys., 1993, vol. 74, pp. 1692–96.CrossRefGoogle Scholar
  27. 27.
    J.A. Venables: Philos. Mag., 1962, vol. 7, pp. 35–44.CrossRefGoogle Scholar
  28. 28.
    Charles P. Kempter, N.H. Krikorian, and Joseph C. McGuire: J. Phys. Chem., 1957, vol. 61, pp. 1237–38.CrossRefGoogle Scholar
  29. 29.
    Heinz Schulz and K.H. Thiemann: Solid State Commun., 1977, vol. 23, pp. 815–19.CrossRefGoogle Scholar
  30. 30.
    K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, R. Tessadri, and C. Mitterer: Surf. Coat. Technol., 2005, vol. 200, pp. 2358–65.CrossRefGoogle Scholar
  31. 31.
    Ayako Kimura, Hiroyuki Hasegawa, Kunihiro Yamada, and Tetsuya Suzuki: Surf. Coat. Technol., 1999, vols. 120–121, pp. 438–41.CrossRefGoogle Scholar
  32. 32.
    P.H. Mayrhofer, D. Music, and J.M. Schneider: Appl. Phys. Lett., 2006, vol. 88, p. 071922.CrossRefGoogle Scholar
  33. 33.
    H.W. Hugosson, H. Högberg, M. Algren, M. Rodmar, and T.I. Selinder: J. Appl. Phys., 2003, vol. 93, pp. 4505–11.CrossRefGoogle Scholar
  34. 34.
    G. Gerald Stoney: Proc. R. Soc. London, Ser. A, 1909, vol. 82, pp. 172–75.CrossRefGoogle Scholar
  35. 35.
    L.A. Donohue, D.B. Lewis, W.D. Münz, M.M. Stack, S.B. Lyon, H.W. Wang, and D. Rafaja: Vacuum, 1999, vol. 55, pp. 109–14.CrossRefGoogle Scholar
  36. 36.
    Florian Rovere and Paul H. Mayrhofer: J. Vac. Sci. Technol., A, 2007, vol. 25, pp. 1336–40.CrossRefGoogle Scholar
  37. 37.
    Z.T. Wu, Z.B. Qi, F.P. Zhu, B. Liu, and Z.C. Wang: Phys. Procedia, 2013, vol. 50, pp. 150–55.CrossRefGoogle Scholar
  38. 38.
    C. Mitterer, P.H. Mayrhofer, and J. Musil: Vacuum, 2003, vol. 71, pp. 279–84.CrossRefGoogle Scholar
  39. 39.
    F. Lomello, F. Sanchette, F. Schuster, M. Tabarant, and A. Billard: Surf. Coat. Technol., 2013, vol. 224, pp. 77–81.CrossRefGoogle Scholar
  40. 40.
    H.M. Tung, J.H. Huang, D.G. Tsai, C.F. Ai, and G.P. Yu: Mater. Sci. Eng., A, 2009, vol. 500, pp. 104–08.CrossRefGoogle Scholar
  41. 41.
    D.C. Agrawal and R. Raj: Acta Metall., 1989, vol. 37, pp. 1265–70.CrossRefGoogle Scholar
  42. 42.
    A. Leyland and A. Matthews: Wear, 2000, vol. 246, pp. 1–11.CrossRefGoogle Scholar
  43. 43.
    Vitaliy Belous, Volodymyr Vasyliev, Alexandr Luchaninov, Volodymyr Marinin, Elena Reshetnyak, Volodymyr Strel’nitskij, Sergiy Goltvyanytsya, and Volodymyr Goltvyanytsya: Surf. Coat. Technol., 2013, vol. 223, pp. 68–74.CrossRefGoogle Scholar
  44. 44.
    M. Pfeiler, K. Kutschej, M. Penoy, C. Michotte, C. Mitterer, and M. Kathrein: Surf. Coat. Technol., 2007, vol. 202, pp. 1050–54.CrossRefGoogle Scholar
  45. 45.
    C. Mendibide, P. Steyer, J. Fontaine, and P. Goudeau: Surf. Coat. Technol., 2006, vol. 201, pp. 4119–24.CrossRefGoogle Scholar
  46. 46.
    H. Ju and J. Xu: Surf. Coat. Technol., 2015, vol. 283, pp. 311–17.CrossRefGoogle Scholar
  47. 47.
    B.A. Pint: Oxid. Met., 1996, vol. 45, pp. 1–37.CrossRefGoogle Scholar
  48. 48.
    Igor Levin and David Brandon: J. Am. Ceram. Soc., 1998, vol. 81, pp. 1995–2012.CrossRefGoogle Scholar
  49. 49.
    P. Burtin, J.P. Brunelle, M. Pijolat, and M. Soustelle: Appl. Catal., 1987, vol. 34, pp. 239–54.CrossRefGoogle Scholar
  50. 50.
    Jerzy Jedliński: Oxid. Metal, 1993, vol. 39, pp. 55–60.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Jingxian Wang
    • 1
    • 2
  • Mohammad Arab Pour Yazdi
    • 3
  • Fernando Lomello
    • 4
  • Alain Billard
    • 3
  • András Kovács
    • 5
  • Frédéric Schuster
    • 6
  • Claude Guet
    • 1
    • 2
  • Timothy J. White
    • 1
    • 2
  • Yves Wouters
    • 7
  • Céline Pascal
    • 7
  • Frédéric Sanchette
    • 8
  • ZhiLi Dong
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Interdisciplinary Graduate School, Energy Research Institute @ NTUNanyang Technological UniversitySingaporeSingapore
  3. 3.Institut FEMTO-ST, UMR 6174, CNRS, Univ. Bourgogne Franche-Comté, UTBMBelfortFrance
  4. 4.Den–Service d’Etudes Analytiques et de Réactivité des Surfaces (SEARS), CEAUniversité Paris-SaclayGif sur YvetteFrance
  5. 5.PGI-5, Forschungszentrum Julich GmbH in the Helmholtz AssociationJulichGermany
  6. 6.CEA Cross-Cutting program on Advanced Materials SaclayGif-sur-YvetteFrance
  7. 7.SiMaP, UMR CNRS, UJF/Grenoble INPSaint-Martin d’HèresFrance
  8. 8.LRC CEA-ICD-LASMIS-UTTNogentFrance

Personalised recommendations