Metallurgical and Materials Transactions A

, Volume 48, Issue 9, pp 4372–4384 | Cite as

Effects of AlN Nanoparticles on the Microstructure, Solderability, and Mechanical Properties of Sn-Ag-Cu Solder

  • Do-Hyun Jung
  • Ashutosh Sharma
  • Dong-Uk Lim
  • Jong-Hyun Yun
  • Jae-Pil Jung


The addition of nanosized AlN particles to Sn-3.0 wt pctAg-0.5 wt pctCu (SAC305) lead-free solder alloy has been investigated. The various weight fractions of AlN (0, 0.03, 0.12, 0.21, 0.60 wt pct) have been dispersed in SAC305 solder matrix by a mechanical mixing and melting route. The influences of AlN nanosized particles on the microstructure, mechanical properties, and solderability (e.g., spreadability and wettability) have been carried out. The structural and morphological features of the nanocomposite solder were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscope (TEM). The experimental results show that the best combination of solderability and mechanical properties is obtained at 0.21 wt pct AlN in the solder matrix. The reinforced composite solder with 0.21 wt pct AlN nanoparticles shows ≈25 pct improvement in ultimate tensile strength (UTS), and ≈4 pct increase in the spreadability. In addition, the results of microstructural analyses of composite solders indicate that the nanocomposite solder, especially reinforced with 0.21 wt pct of AlN nanoparticles, exhibits better microstructure and improved elongation percentage, compared with the monolithic SAC305 solder.



This study was supported by the Technology Innovation Program (or Industrial Strategic technology development program, 10051436, Development and mass production of 25 pct reduced prices nano–micro compound Pb-free solder paste for automotive devices in response to ELV Directive), funded by the Ministry of Trade, Industry & Energy (MI, Korea).


  1. 1.
    M. Abtew and G. Selvaduray: Mater. Sci. Eng. R, 2000, vol. 27, pp. 95–141.CrossRefGoogle Scholar
  2. 2.
    K. Zeng and K. N. Tu: Mater. Sci. Eng. R, 2002, vol. 38, pp. 55–105.CrossRefGoogle Scholar
  3. 3.
    C. Y. Lin, U. S. Mohanty and J. H. Chou: J. Alloy. Compd., 2010, vol. 501, pp. 204–10.CrossRefGoogle Scholar
  4. 4.
    L. R. Garcia, W. R. Osorio, L. C. Peixoto and A. Garcia: J. Electron. Mater., 2009, vol. 38, pp. 2405–14.CrossRefGoogle Scholar
  5. 5.
    T. T. Nguyen, D. Yu and S. B. Park: J. Electron. Mater., 2011, vol. 40, pp. 1409–15.CrossRefGoogle Scholar
  6. 6.
    I. Shohji, T. Yoshida, T. Takahashi and S. Hioki: Mater. Trans. A, 2002, vol. 43, pp. 1854–57.CrossRefGoogle Scholar
  7. 7.
    A. Sharma, S. Das and K. Das: Electrodeposition of Composite Materials, Dr. A.M.A Mohamed, ed., InTech, 2016, DOI: 10.5772/62036. Available from:
  8. 8.
    S. Chen, L. Zhang, J. Liu, Y. Gao and Q. Zhai: Mater. Trans. A, 2010, vol. 51, pp. 1720–6.CrossRefGoogle Scholar
  9. 9.
    S. M. L. Nai, J. V. M. Kuma, M. E. Alam, X. L. Zhong, P. Babaghorbani and M. Gupta: J. Mater. Eng. Perf., 2010, vol. 19, pp. 335–41.CrossRefGoogle Scholar
  10. 10.
    A. Sharma, Y. J. Jang, J.B. Kim and J.P. Jung: J. Alloy. Compd., 2017, vol. 704, pp. 795–803.CrossRefGoogle Scholar
  11. 11.
    A. Sharma, S. Kumar, D. H. Jung and J. P. Jung: J. Mater. Sci.: Mater. Electron., 2017, vol. 28, 8116.Google Scholar
  12. 12.
    H. Y. Lee, A. Sharma, S. H. Kee, Y. W. Lee, J. T. Moon and J. P. Jung: Electron. Mater. Lett., 2014, vol. 10, pp. 997–1004.CrossRefGoogle Scholar
  13. 13.
    L. C. Taso, C. H. Huang, C. H. Chuang, and R. S. Chen: Mater. Sci. Eng., 2012, vol. 545, pp. 194–200.CrossRefGoogle Scholar
  14. 14.
    J. Shen and Y. C. Chan: Microelectron. Reliab., 2009, vol. 49, pp. 223–34.CrossRefGoogle Scholar
  15. 15.
    S. M. L. Nai, J. Wei and M. Gupta: Thin. Solid. Films., 2006, vol. 504, pp. 401–04.CrossRefGoogle Scholar
  16. 16.
    H. R. Kotadia, O. Mokhtari, M. P. Clode, M. A. Green and S. H. Mannan: J. Alloy. Compd., 2012, vol. 511, pp. 176–88.CrossRefGoogle Scholar
  17. 17.
    T. Fouzder, I. Shafiq, Y. C. Chan, A. Sharif and W. K. C. Yung: J. Alloy. Compd., 2011 vol. 509, pp. 1885–92.CrossRefGoogle Scholar
  18. 18.
    E. M. N. Ervina, A. Singh and Y. T. Chuan: Solder. Surf. Mt. Tech., 2013, vol. 25, pp. 229–41.CrossRefGoogle Scholar
  19. 19.
    C. L. Chuang, L. C. Tsao, H. K. Lin and L. P. Feng: Mater. Sci. Eng. A, 2012, vol. 558, pp. 478–84.CrossRefGoogle Scholar
  20. 20.
    A. Sharma, S. Das and K. Das: Surf. Coat. Technol., 2015, vol. 261, pp. 235–43.CrossRefGoogle Scholar
  21. 21.
    A. Sharma, D. E. Xu, J. Chow, M. Mayer, H. R. Sohn and J. P. Jung: Electron. Mater. Lett., 2015, vol. 11, pp. 1072–77.CrossRefGoogle Scholar
  22. 22.
    A. Sharma, S. Mallik, N. Ekere and J.P. Jung: J. Microelectron. Packag. Soc., 2014, vol. 21,, pp. 83–9. doi: 10.6117/kmeps.2014.21.4.083 CrossRefGoogle Scholar
  23. 23.
    S. M. L. Nai, J. Wei and M. Gupta: J. Electron. Mater., 2006, vol. 35, pp. 1518–22.CrossRefGoogle Scholar
  24. 24.
    A. A. El-Daly, W. M. Desoky, T. A. Elmosalami, M. G. El-Shaarawy and A. M. Abdraboh: Mater. Design, 2015, vol. 65, pp. 1196–204.CrossRefGoogle Scholar
  25. 25.
    L. C. Tsao and S. Y. Chang: Mater. Design, 2010, vol. 31, pp. 990–3.CrossRefGoogle Scholar
  26. 26.
    A. A. El-Daly, T. A. Elmosalami, W. M. Desoky, M. G. El-Shaarawy and A. M. Abdraboh: Mater. Sci. Eng. A, 2014, vol. 618, pp. 389–97.CrossRefGoogle Scholar
  27. 27.
    A. K. Gain, Y. C. Chan and W. K. C. Yung: Microelectron. Reliab., 2011, Vol. 51, pp. 2306–13.CrossRefGoogle Scholar
  28. 28.
    A. Sharma, B. G. Baek and J. P. Jung: Mater. Design, 2015, vol. 87, pp. 370–9.CrossRefGoogle Scholar
  29. 29.
    K. Strecker and M. J. Hoffmann: J. Eur. Ceram. Soc., 2005, vol. 25, pp. 801–7.CrossRefGoogle Scholar
  30. 30.
    J. Hu, H. Xiao, W. Guo, Q. Li, W. Xie and B. Zhu: Ceram. Int., 2014, vol. 40, pp. 1065–71.CrossRefGoogle Scholar
  31. 31.
    R. K. Goyal, A. N. Tiwari, U. P. Mulik and Y. S. Negi: Compos. A, 2007, vol. 38, pp. 516–24.CrossRefGoogle Scholar
  32. 32.
    B. Abdallah, C. Duquenne, M. P. Besland, E. Gautron, P. Y. Jouan, P. Y. Tessier, J. Brault, Y. Cordier and M. A. Djouadi: Eur. Phys. J. Appl. Phys., 2008, vol. 43, pp. 309–13.CrossRefGoogle Scholar
  33. 33.
    JIS: Test methods for soldering fluxes, JIS Z 3197:2012, Japanese Standards Association, 2012.Google Scholar
  34. 34.
    A. Sharma, H. R. Sohn and J. P. Jung: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 494–503.CrossRefGoogle Scholar
  35. 35.
    P. A. Meenan, S. R. Anderson and D. L. Klug: in Handbook of Industrial Crystallization, A. S. Myerson, ed. Elsevier, Amsterdam, 2001, pp. 67–100Google Scholar
  36. 36.
    J. Shen, Y. C. Liu, Y. J. Han, Y. M. Tian and H. X. Gao: J. Electron. Mater., 2006, vol. 35, pp. 1672–9.CrossRefGoogle Scholar
  37. 37.
    A. Sharma, S. Bhattacharya, S. Das and K. Das: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5587–5601.CrossRefGoogle Scholar
  38. 38.
    Q. J. Zhai, S. K. Guan and Q. Y. Shang: Alloy Thermo-Mechanism: Theory and Application, Metallurgy Industry Press, Beijing, 1999.Google Scholar
  39. 39.
    R. Casati and M. Vedani: Metals, 2014, vol. 4, pp. 65–83.CrossRefGoogle Scholar
  40. 40.
    K, Chu, Z. Liu, C. Jia, H. Chen, X. Liang, W. Gao, W. Tian and H. Guo: J. Alloy. Compd., 2010, vol. 490, pp. 453–8.CrossRefGoogle Scholar
  41. 41.
    A. S. M. A. Haseeb, M. M. Arafat and M. R. Johan: Mater. Charact., 2012, vol. 64, pp. 27–35.CrossRefGoogle Scholar
  42. 42.
    L. Wang, D. Q. Yu, J. Zhao and M. L. Huang: Mater. Lett., 2002, vol. 56, pp. 1039–42.CrossRefGoogle Scholar
  43. 43.
    W. Zhang, Y. Zhong and C. Wang: J. Mater. Sci. Technol., 2012, vol. 28, pp. 661–65.CrossRefGoogle Scholar
  44. 44.
    D. Q. Yu, J. Zhao and L. Wang: J. Alloy. Compd., 2004, vol. 376, pp. 170–75.CrossRefGoogle Scholar
  45. 45.
    J. Wu, S. B. Xue, J. W. Wang, S. Liu, Y. L. Han and L. J. Wang: J. Mater. Sci.: Mater. Electron., 2016, vol. 27, pp. 1–35.Google Scholar
  46. 46.
    D.R. Frear: Jom. J. Min. Met. Mat. S, 1996, vol. 48, pp. 49–53.CrossRefGoogle Scholar
  47. 47.
    P. Sebo and P. Stefanik: Kovove Mater., 2005, vol. 43, pp. 202–09.Google Scholar
  48. 48.
    T. Siewert, S. Liu, D. R. Smith, and J. C. Madeni: Database for Solder Properties with Emphasis on New Lead-free Solders, NIST, Colorado, 2002.Google Scholar
  49. 49.
    M. Rashad, F. Pan, A. Tang and M. Asif: Proc. Natl. Sci.: Mater. Int., 2014, vol. 24, pp. 101–08.CrossRefGoogle Scholar
  50. 50.
    N. Ramakrishnan: Acta Mater., 1996, vol. 44, pp. 69–77.CrossRefGoogle Scholar
  51. 51.
    L. H. Dai, Z. Ling and Y. L. Bai: Compos. Sci. Technol., 2001, vol. 61, pp. 1057–63.CrossRefGoogle Scholar
  52. 52.
    S. Chantaramanee, S. Wisutmethangoon, L. Sikong and T. Plookphol: J. Mater. Sci.: Mater. Electron., 2013, vol. 24, pp. 3707–15.Google Scholar
  53. 53.
    C. S. Goh, J. Wei, L. C. Lee and M. Gupta: Acta Mater., 2007, vol. 55, pp. 5115–21.CrossRefGoogle Scholar
  54. 54.
    P. Babaghorbani, S. M. L. Nai and M. Gupta: J. Mater. Sci.: Mater. Electron., 2009, vol. 20, pp. 571–6.Google Scholar
  55. 55.
    P. Liu, P. Yao and J. Liu: J. Electron. Mater., 2008, vol. 37, pp. 874–9.CrossRefGoogle Scholar
  56. 56.
    A. Sharma, S. Bhattacharya, S. Das, H. J. Fecht and K. Das: J. Alloy. Compd., 2013, vol. 574, pp. 609–16.CrossRefGoogle Scholar
  57. 57.
    R. J. Arsenault and N. Shi: Mater. Sci. Eng. A, 1986, vol. 81, 175–87.CrossRefGoogle Scholar
  58. 58.
    S. R. Bakshi and A. Agarwal: Carbon, 2011, vol. 49, pp. 533–44.CrossRefGoogle Scholar
  59. 59.
    C. S. Goh, J. Wei, L. C. Lee and M. Gupta: Mater. Sci. Eng. A, 2006, vol. 423, pp. 153–6.CrossRefGoogle Scholar
  60. 60.
    K. S. Kim, S. H. Huh and K. Suganuma: Mater. Sci. Eng. A, 2002, vol. 333, pp. 106–14.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Do-Hyun Jung
    • 1
  • Ashutosh Sharma
    • 1
  • Dong-Uk Lim
    • 1
  • Jong-Hyun Yun
    • 2
  • Jae-Pil Jung
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulRepublic of Korea
  2. 2.KD One Co. Ltd.SeoulRepublic of Korea

Personalised recommendations