Advertisement

Metallurgical and Materials Transactions A

, Volume 48, Issue 8, pp 3852–3868 | Cite as

Influence of Initial Microstructure on Microstructural Stability and Mechanical Behavior of Cryorolled A356 Alloy Subjected to Annealing

  • R. J. Immanuel
  • S. K. PanigrahiEmail author
Article

Abstract

In the present work, various heat treatment cycles are imposed on an A356 aluminum alloy to develop two different base microstructures, one with supersaturated aluminum matrix and the other with coarse and uniformly distributed precipitates. Both the developed materials are subjected to cryorolling and then isochronally annealed for 1 hour at various temperatures ranging from 373 K to 673 K (100 °C to 400 °C). The overall strength is maximum for the cryorolled material with supersaturated base microstructure due to the dominant dislocation strengthening and precipitation strengthening mechanisms. However, the cryorolled material with precipitated base microstructure is found to have superior microstructural stability with retained ultrafine-grained (UFG) microstructure up to the annealing temperature of 473 K (200 °C) due to effective grain boundary pinning by the precipitates. Also, the material retains about 85 pct of as-cryorolled strength with enhanced ductility even after annealing at 473 K (200 °C). A detailed investigation on the microstructural evolution of the material at various annealing temperatures along with their mechanical behavior is presented in this article.

Notes

Acknowledgments

The authors acknowledge DST, India, for use of the characterization facilities developed under DST-FIST Grant No. SR/FST/ETII-059/2013(G) Dt: 25-09-2014.

References

  1. 1.
    R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.CrossRefGoogle Scholar
  2. 2.
    J. Driver: Scripta Mater., 2004, vol. 51, pp. 819–23.CrossRefGoogle Scholar
  3. 3.
    S.K. Panigrahi and R. Jayaganthan: J. Mater. Sci., 2010, vol. 45, pp. 5624–36.CrossRefGoogle Scholar
  4. 4.
    V.M. Segal: Mater. Sci. Eng. A, 1999, vol. 271, pp. 322–33.CrossRefGoogle Scholar
  5. 5.
    A.P. Zhilyaev and T.G. Langdon: Progr. Mater. Sci., 2008, vol. 53, pp. 893–979.CrossRefGoogle Scholar
  6. 6.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.CrossRefGoogle Scholar
  7. 7.
    Q. Chen, D. Shu, C. Hu, Z. Zhao, and B. Yuan: Mater. Sci. Eng. A, 2012, vol. 541, pp. 98–104.CrossRefGoogle Scholar
  8. 8.
    Y. Wang, M. Chen, F. Zhou, and E. Ma: Lett. Nat., 2002, vol. 419, pp. 912–15.CrossRefGoogle Scholar
  9. 9.
    R.J. Immanuel and S.K. Panigrahi: Mater. Sci. Eng. A, 2015, vol. 640, pp. 424–35.CrossRefGoogle Scholar
  10. 10.
    S.K. Panigrahi and R. Jayaganthan: Mater. Sci. Eng. A, 2008, vol. 492, pp. 300–05.CrossRefGoogle Scholar
  11. 11.
    N. Gao, J.S. Marco, and T.G. Langdon: Mater. Sci. Technol., 2009, vol. 25, pp. 687–98.CrossRefGoogle Scholar
  12. 12.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004, pp. 11–378.CrossRefGoogle Scholar
  13. 13.
    Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 691–701.CrossRefGoogle Scholar
  14. 14.
    P.N. Rao, D. Singh, and R. Jayaganthan: Mater. Sci. Technol., 2013, vol. 29, pp. 76–82.CrossRefGoogle Scholar
  15. 15.
    A. Dhal, S.K. Panigrahi, and M.S. Shunmugam: J. Alloys Compd., 2015, vol. 649, pp. 229–38.CrossRefGoogle Scholar
  16. 16.
    M. Nikitina, R. Islamgaliev, and A. Kamalov: Rev. Adv. Mater. Sci., 2010, vol. 25, pp. 74–81.Google Scholar
  17. 17.
    S. Poortmans and B. Verlinden: Mater. Sci. Forum, 2004, vols. 467–470, pp. 1319–24.CrossRefGoogle Scholar
  18. 18.
    H. Jiang, Y.T. Zhu, D.P. Butt, I.V. Alexandrov, and T.C. Lowe: Mater. Sci. Eng. A, 2000, vol. 290, pp. 128–38.CrossRefGoogle Scholar
  19. 19.
    S.K. Panigrahi and R. Jayaganthan: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2675–90.CrossRefGoogle Scholar
  20. 20.
    L.G. Korshunov, A.V. Korznikov, and N.L. Chernenko: Phys. Met. Metallogr., 2011, vol. 111, pp. 395–402.CrossRefGoogle Scholar
  21. 21.
    B.V Radhakrishna Bhat, Y.R. Mahajan, and Y.V.R.K. Prasad: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 629–39.Google Scholar
  22. 22.
    S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3063–78.CrossRefGoogle Scholar
  23. 23.
    S.K. Panigrahi and R. Jayaganthan: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3208–17.CrossRefGoogle Scholar
  24. 24.
    R.J. Immanuel and S.K. Panigrahi: Mater. Des., 2016, vol. 101, pp. 44–55.CrossRefGoogle Scholar
  25. 25.
    B. Gopi, N.N. Krishna, K. Sivaprasad, and K. Venkateswarlu: Adv. Mater. Res., 2012, vol. 584, pp. 556–60.CrossRefGoogle Scholar
  26. 26.
    G. Williamson and W. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.CrossRefGoogle Scholar
  27. 27.
    T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert: Powder Diffr., 2014, vol. 29, pp. S13–8.CrossRefGoogle Scholar
  28. 28.
    H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia: Acta Mater., 2013, vol. 61, pp. 2769–82.CrossRefGoogle Scholar
  29. 29.
    P. Ji-hua, T. Xiao-long, H.E. Jian-ting, and X.U. De-ying: Trans. Nonferrous Met. Soc. China, 2010, vol. 21, pp. 1950–56.Google Scholar
  30. 30.
    S.L. Lee, Y.C. Cheng, W.C. Chen, C.K. Lee, and A.H. Tan: Mater. Chem. Phys., 2012, vol. 135, pp. 503–09.CrossRefGoogle Scholar
  31. 31.
    M.H. Farshidi, M. Kazeminezhad, and H. Miyamoto: Mater. Sci. Eng. A, 2015, vol. 640, pp. 42–50.CrossRefGoogle Scholar
  32. 32.
    U.F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171–273.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations