Metallurgical and Materials Transactions A

, Volume 48, Issue 8, pp 3770–3776 | Cite as

Comparative Study of Surface Chemical Composition and Oxide Layer Modification upon Oxygen Plasma Cleaning and Piranha Etching on a Novel Low Elastic Modulus Ti25Nb21Hf Alloy

  • Virginia Paredes
  • Emiliano Salvagni
  • Enrique Rodríguez-Castellón
  • José María Manero
Article
  • 111 Downloads

Abstract

Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.

References

  1. 1.
    M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee: Int. J. Chem. Nucl. Mater. Metall. Eng., 2014, vol. 8, pp. 772–77.Google Scholar
  2. 2.
    M. Niinomi: Biomater. Sci. Eng., 2011, pp. 249–68.Google Scholar
  3. 3.
    J.Y. Rho, T.Y. Tsui, and G.M. Pharr: Biomaterials, 1997, vol. 18, pp. 1325–30.CrossRefGoogle Scholar
  4. 4.
    C. Oldani and A. Dominguez: Rec. Adv. Arthroplasty, 2012, pp. 149–62.Google Scholar
  5. 5.
    M. Niinomi and M. Nakai: Int. J. Biomater., 2011, pp. 1–10.Google Scholar
  6. 6.
    A.M. Rodrigo Sánchez: Univ. Complut. Madr., 2001, pp. 1–144.Google Scholar
  7. 7.
    M.C. Ikeda Artacho, J.F. Ceccarelli Calle, and D. Proano de Casalino: Estomatol. Hered., 2007, pp. 90–98.Google Scholar
  8. 8.
    J.M.C. Herranz-Diez, F.J. Gil, and J. Guillem-Marti: J. Biomater. Appl., 2015, vol. 30, pp. 171–81.CrossRefGoogle Scholar
  9. 9.
    J.M.M.J. Guillem-Martí, C. Herranz-Díez, J.E. Shafferd, and F.J. Gil: Mater. Sci. Eng. A, 2015, vol. 636, pp. 507-15.CrossRefGoogle Scholar
  10. 10.
    B.R. Silverman and J.A. Champion: Acta Biomaterialia, 2014, vol. 10, pp. 4956–60.CrossRefGoogle Scholar
  11. 11.
    11. S. Gomes, I.B. Leonor, J.F. Mano, R.L. Reis, and D.L. Kaplan: Progr. Polym. Sci., 2012, vol. 37, pp. 1–17.CrossRefGoogle Scholar
  12. 12.
    G. Petre F, A. Helth, A. Voss, R. Sueptitz, M. Calin, J. Eckert, and A. Gebert: J. Biomed. Mater. Res. Part B Appl. Biomater., 2013, vol. 101, pp. 269–78.CrossRefGoogle Scholar
  13. 13.
    M. Pisarek, M. Lewandowska, A. Roguska, K.J. Kurzydłowski, and M. Janik-Czachor: Mater. Chem. Phys., 2007, vol. 104, pp. 93–97.CrossRefGoogle Scholar
  14. 14.
    14. F. Variola, J.-H. Yi, L. Richert, J.D. Wuest, F. Rosei, and A. Nanci: Biomaterials, 2008, vol. 29, pp. 1285–98.CrossRefGoogle Scholar
  15. 15.
    15. F. Variola, A. Lauria, A. Nanci, and F. Rosei: Adv. Eng. Mater., 2009, vol. 11, pp. B227–B234.CrossRefGoogle Scholar
  16. 16.
    A.O. Lobo, S.C. Ramos, E.F. Antunes, F.R. Marciano, V.J. Trava-Airoldi, and E.J. Corat: Mater. Lett., 2012, vol. 70, pp. 89–93.CrossRefGoogle Scholar
  17. 17.
    V. Paredes, E. Salvagni, E. Rodriguez, F.J. Gil, and J.M. Manero: J. Mater. Sci. Mater. Med., 2014, vol. 25, pp. 311–20.CrossRefGoogle Scholar
  18. 18.
    L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq: Dent. Mater., 2007, vol. 23, pp. 844–54.CrossRefGoogle Scholar
  19. 19.
    L. Salvati and X. Yang: Patente Número de Solicitud E08162563, Depuy Products, Inc., 2011.Google Scholar
  20. 20.
    20. V. Paredes, E. Salvagni, E. Rodriguez, F.J. Gil, and J.M. Manero: J. Biomed. Mater. Res. Part B Appl. Biomater., 2014, vol. 103, pp. 495–502.CrossRefGoogle Scholar
  21. 21.
    V. Paredes, E. Salvagni, E. Rodriguez, F.J. Gil, and J.M. Manero: J. Mater. Sci. Mater. Med., 2014, vol. 25, pp. 311–20.CrossRefGoogle Scholar
  22. 22.
    H.J. Martin, K.H. Schulz, J.D. Bumgardner, and K.B. Walters: Langmuir ACS J. Surf. Coll., 2007, vol. 23, pp. 6645–51.CrossRefGoogle Scholar
  23. 23.
    P. Chu, J. Chen, and L. Wang: Mater. Sci. Eng. R, 2002, vol. 36, pp. 143–206.CrossRefGoogle Scholar
  24. 24.
    A. Graham Dan and D. Sean: Mater. Matter, 2006, vol. 1 (2), p. 18.Google Scholar
  25. 25.
    D.K. Owens and R.C. Wendt: J. Appl. Polym. Sci., 1969, vol. 13, pp. 1741–47.CrossRefGoogle Scholar
  26. 26.
    R. Smart, S. Mcintyre, and I. Bello: Surf. Sci. West., 2011, pp. 1–41.Google Scholar
  27. 27.
    D. Briggs, C.D. Wanger, W.M. Riggs, L.E. Davis, F.E. Moulder, and E. Muilenberg: Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, 1979, vol. 3, pp. 1–190.Google Scholar
  28. 28.
    International Organization Standardization: ISO 4287, 1997 Geometrical Product Specifications (GPS), Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters, 1997, pp. 1–25.Google Scholar
  29. 29.
    29. H. Sakamoto, Y. Hirohashi, H. Saito, H. Doi, Y. Tsutsumi, Y. Suzuki, K. Noda, and T. Hanawa: Dent. Mater. J., 2008 vol. 27, pp. 81–92.CrossRefGoogle Scholar
  30. 30.
    Y. Tanaka, H. Saito, Y. Tsutsumi, H. Doi, H. Imai, and T. Hanawa: Mater. Trans., 2008, vol. 49, pp. 805–11.CrossRefGoogle Scholar
  31. 31.
    M. Pegueroles Neyra: Univ Politèc. Catalunya, 2009, pp. 1–263.Google Scholar
  32. 32.
    L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, and C. Martelet: Mater. Sci. Eng. C, 2003, vol. 23, pp. 551–60.CrossRefGoogle Scholar
  33. 33.
    A. Wennerberg and T. Albrektsson: Clin. Oral Implants Res., 2009, vol. 20, pp. 172–84.CrossRefGoogle Scholar
  34. 34.
    V. Paredes: Univ Politèc Catalunya, 2012, pp. 1–251.Google Scholar
  35. 35.
    S. López Requejo: Univ Politèc Catalunya, 2005, pp. 5–68.Google Scholar
  36. 36.
    36. M. Pegueroles and C. Aparicio: Mater. Res., 2005, vol. 12, pp. 80–87.Google Scholar
  37. 37.
    N. Huang, Y.X. Leng, P. Yang, J.Y. Chen, H. Sun, G.J. Wan, J. Wang, P.K. Chu, and I.G. Brown: 30th Int. Conf. Plasma Sci. 2003, ICOPS 2003, IEEE Conf. Rec.—Abstr., IEEE, Piscataway, NJ, 2002, vol. 36, p. 439.Google Scholar
  38. 38.
    A. Méndez-Vilas, M.G. Donoso, J.L. González-Carrasco, and M.L. González-Martín: Coll. Surf. B Biointerfaces, 2006, vol. 52, pp. 157–66.CrossRefGoogle Scholar
  39. 39.
    U. Cvelbar, M. Mozetič, I. Junkar, A. Vesel, J. Kovač, A. Drenik, T. Vrlinič, N. Hauptman, M. Klanjšek-Gunde, B. Markoli, N. Krstulović, S. Milošević, F. Gaboriau, and T. Belmonte: Appl. Surf. Sci., 2007, vol. 253, pp. 8669–73.CrossRefGoogle Scholar
  40. 40.
    J. Landoulsi, M.J. Genet, K. El Kirat, C. Richard, S. Pulvin, and P.G. Rouxhe: Biomater. Phys. Chem., 2011, vol. 5, pp. 99–126.Google Scholar
  41. 41.
    S. Xiao, M. Textor, N.D. Spencer, H. Sigrist, and C. Neucha: Peptides, 1998, vol. 14, pp. 5507–16.Google Scholar
  42. 42.
    G. Iucci, C. Battocchio, M. Dettin, F. Ghezzo, G. Polzonetti, G. Lucci, C. Battocchio, M. Dettin, F. Ghezzo, and G. Polzonetti: Solid State Sci., 2010, vol. 12, pp. 1861–65.CrossRefGoogle Scholar
  43. 43.
    A. Kocijan, I. Milosev, and B. Pihlar: J. Mater. Sci. Mater. Med., 2004, vol. 15, pp. 643–50.CrossRefGoogle Scholar
  44. 44.
    I. Demetrescu, C. Pirvu, and V. Mitran: Bioelectrochem., 2010, vol. 79, pp. 122–29.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Virginia Paredes
    • 1
    • 3
  • Emiliano Salvagni
    • 2
  • Enrique Rodríguez-Castellón
    • 4
  • José María Manero
    • 3
  1. 1.Research Group on Materials, Processes and Design (GIMyM), Department of Mechanical EngineeringUniversidad del NorteBarranquillaColombia
  2. 2.Institute for Advanced Chemistry of CataloniaSpanish National Research Council (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)BarcelonaSpain
  3. 3.Department of Materials Science and Metallurgy, Biomaterials, Biomechanics and Tissue Engineering Group (BBT)Universidad Politécnica de Cataluña (UPC)BarcelonaSpain
  4. 4.Department of Inorganic ChemistryUniversidad de MálagaMálagaSpain

Personalised recommendations