Metallurgical and Materials Transactions A

, Volume 48, Issue 8, pp 3831–3842 | Cite as

Understanding the Effect of Grain Boundary Character on Dynamic Recrystallization in Stainless Steel 316L

  • Megan Beck
  • Michael Morse
  • Caleb Corolewski
  • Koyuki Fritchman
  • Chris Stifter
  • Callum Poole
  • Michael Hurley
  • Megan FraryEmail author


Dynamic recrystallization (DRX) occurs during high-temperature deformation in metals and alloys with low to medium stacking fault energies. Previous simulations and experimental research have shown the effect of temperature and grain size on DRX behavior, but not the effect of the grain boundary character distribution. To investigate the effects of the distribution of grain boundary types, experimental testing was performed on stainless steel 316L specimens with different initial special boundary fractions (SBF). This work was completed in conjunction with computer simulations that used a modified Monte Carlo method which allowed for the addition of anisotropic grain boundary energies using orientation data from electron backscatter diffraction (EBSD). The correlation of the experimental and simulation work allows for a better understanding of how the input parameters in the simulations correspond to what occurs experimentally. Results from both simulations and experiments showed that a higher fraction of so-called “special” boundaries (e.g., Σ3 twin boundaries) delayed the onset of recrystallization to larger strains and that it is energetically favorable for nuclei to form on triple junctions without these so-called “special” boundaries.


Monte Carlo Nucleation Site Dynamic Recrystallization Triple Junction Boundary Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NSF Award 0642363.


  1. 1.
    T. Sakai and J.J. Jonas: Acta Metall. Mater., 1984, vol. 32, pp.189–209.CrossRefGoogle Scholar
  2. 2.
    D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69-80.CrossRefGoogle Scholar
  3. 3.
    M. Jafari and A. Najafizadeh: Mat. Sci. Eng. A-Struct., 2009, vol. 504, pp 16-25.CrossRefGoogle Scholar
  4. 4.
    M.E. Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado: Acta. Mater., 2005, vol. 53, pp. 4605-12.CrossRefGoogle Scholar
  5. 5.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130-207.CrossRefGoogle Scholar
  6. 6.
    J. J. Jonas, C.M. Sellars, W.J.M.G. Tegart: Metall Rev., 1969, vol. 14, pp. 1-24.Google Scholar
  7. 7.
    S. Sakui, T. Sakai, and K. Takeishi: Trans ISIJ, 1977, vol. 17, pp. 718-25.Google Scholar
  8. 8.
    C.M. Sellars: Philos. T. Roy. Soc. A, 1978, vol. 288, pp. 147-58.CrossRefGoogle Scholar
  9. 9.
    T. Sakai: J. Mater. Process Tech., 1995, vol. 53, pp. 349-61.CrossRefGoogle Scholar
  10. 10.
    B. Derby: Acta Metall. Mater., 1991, vol. 39, pp. 955-62.CrossRefGoogle Scholar
  11. 11.
    A. Belyakov, H. Miura, and T. Sakai: Scripta Mater., 2000, vol. 43, pp. 21-26.CrossRefGoogle Scholar
  12. 12.
    R. Sandstrom and r. Lagneborg: Scripta Metall. Mater., 1975, vol. 9, pp. 59–65.Google Scholar
  13. 13.
    T. Maki, K. Akasaka, K. Okuno, and I. Tamura: Trans ISIJ, 1982, vol. 22, pp. 253-61.CrossRefGoogle Scholar
  14. 14.
    M. Luton and C.M. Sellars: Acta Metall. Mater., 1969, vol. 17, pp. 1033-43.CrossRefGoogle Scholar
  15. 15.
    A. D. Rollett: Prog. Mater. Sci., 1997, vol. 42, pp. 79-99.CrossRefGoogle Scholar
  16. 16.
    M.E. Wahabi, J.M. Cabrera, and J.M. Prado: Mat. Sci. Eng. A-Struct., 2003, vol. 343, pp. 116-25.CrossRefGoogle Scholar
  17. 17.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 1 st ed., Elsevier Science Ltd., Oxford, 1995, 363-92.Google Scholar
  18. 18.
    H. Miura, T. Sakai, S. Andiarwanto, and J.J. Jonas: Philos. Mag., 2005, vol. 85, pp. 2653-69.CrossRefGoogle Scholar
  19. 19.
    H. Miura, T. Sakai, and J.J. Jonas: Scripta Mater., 2006, vol. 55, pp. 197-70.CrossRefGoogle Scholar
  20. 20.
    H. Miura, M. Ozama, R. Mogawa, and T. Sakai, Scripta Mater., 2003, vol. 48, pp. 1501-05.CrossRefGoogle Scholar
  21. 21.
    H. Miura, T. Sakai, R. Mogawa, and G. Gottstein: Scripta Mater., 2004, vol. 51, pp. 671-75.CrossRefGoogle Scholar
  22. 22.
    A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai: Mat. Sci. Eng. A-Struct., 2002, vol. 323, pp. 177-86.CrossRefGoogle Scholar
  23. 23.
    M. Hasegawa, M. Yamamoto, and H. Fukutomi: Acta Mater., 2003, vol. 51, pp. 3939-50.CrossRefGoogle Scholar
  24. 24.
    P. Karduck, G. Gottstein, and H. Mecking: Acta Metall., 1983, vol. 31, pp. 1525-36.CrossRefGoogle Scholar
  25. 25.
    P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter: Mat. Sci. Eng. A-Struct, 2006, vol. 420, pp. 306-14.CrossRefGoogle Scholar
  26. 26.
    M.J. Luton and C.M. Sellars: Acta Metall. Mater., 1969, vol. 17, pp. 1033-43.CrossRefGoogle Scholar
  27. 27.
    E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127-36.CrossRefGoogle Scholar
  28. 28.
    G. Shen, S.L. Semiatin, and R. Shivpuri: Metall. Mater. Trans. A, 1995, vol. 26, pp. 1795-1803.CrossRefGoogle Scholar
  29. 29.
    Y.S. Na, J.T. Yeom, N.K. Park, and J.Y. Lee: Metall. Mater. Trans. A, 2006, vol 37, pp. 41-47.CrossRefGoogle Scholar
  30. 30.
    W. Aretz, D. Ponge, and G. Gottstein: Scripta Metall. Mater., 1992, vol. 27, pp. 1593-98.CrossRefGoogle Scholar
  31. 31.
    E. Brunger, X. Wang, and G. Gottstein: Scripta Mater., 1998, vol. 38, pp. 1843-49.CrossRefGoogle Scholar
  32. 32.
    W. Roberts, H. Boden, and B. Ahlblom: Met. Sci., 1979, vol. 13, pp. 195-05.CrossRefGoogle Scholar
  33. 33.
    X. Wang, E. Brunger, and G. Gottstein: Mat. Sci. Eng. A-Struct, 2000, vol. 290, pp. 180-85.CrossRefGoogle Scholar
  34. 34.
    X. Wang, E. Brunger, and G. Gottstein: Scripta Mater., 2002, vol. 46, pp. 875-80.CrossRefGoogle Scholar
  35. 35.
    M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, and I. Karibe: Acta Mater., 2002, vol. 50, pp. 2331-41.CrossRefGoogle Scholar
  36. 36.
    E.M. Lehockey, G. Palumbo, P. Lin, and A. Brennenstuhl: Metall. Mater. Trans. A, 1998, vol. 29, pp. 387-96.CrossRefGoogle Scholar
  37. 37.
    E.M. Lehockey and G. Palumbo: Mat. Sci. Eng. A-Struct., 1997, vol. 237, pp. 168-72.CrossRefGoogle Scholar
  38. 38.
    G. Gupta, B. Alexandreanu, and G.S Was: Metall. Mater. Trans. A, 2004, vol. 35, pp. 717–19.Google Scholar
  39. 39.
    C.J. Boehlert, D.S. Dickmann, and N.C. Eisinger: Metall. Mater. Trans. A, 2006, vol. 37, pp. 27-40.CrossRefGoogle Scholar
  40. 40.
    A. Goyal, D.P. Norton, D.M. Kroeger, D.K. Christen, M. Paranthaman, E.D. Specht, J.D. Budai, Q. He, B. Saffian, F.A. List, D.F. Lee, E. Hatfield, P.M. Martin, C.E. Klabunde, J. Mathis, and C. Park: J. Mater. Res., 1997, vol. 12, pp. 2924-40.CrossRefGoogle Scholar
  41. 41.
    D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, and F.A. List: Science, 1996, vol. 274, pp. 755-57.CrossRefGoogle Scholar
  42. 42.
    D.G. Brandon: Acta Metall. Mater., 1966, vol. 14, pp. 1479-84.CrossRefGoogle Scholar
  43. 43.
    H. Miura, S. Andiarwanto, and T. Sakai: Thermec’2003, Pts 1-5, 2003, pp. 4387–92.Google Scholar
  44. 44.
    H. Miura, S. Andiarwanto, T. Sakai, and J.J. Jonas: Icotom 14, Pts 1 and 2, 2005, pp. 1159–64.Google Scholar
  45. 45.
    H. Miura, T. Sakai, H. Hamaji, and J.J. Jonas: Scripta Mater., 2004, vol. 50, pp. 65-69.CrossRefGoogle Scholar
  46. 46.
    F.J. Humphreys: Mater. Sci. Forum, 2004, vol. 467-470, pp. 107-16.CrossRefGoogle Scholar
  47. 47.
    C.R. Chen, S.X. Li, J. L. Wen, and W.P. Jia: Mat. Sci. Eng. A-Struct., 2000, vol. 282, pp. 170-76.CrossRefGoogle Scholar
  48. 48.
    S.R. Skjervold and N. Ryum: Acta Mater., 1996, vol. 44, pp. 3407-19.CrossRefGoogle Scholar
  49. 49.
    S. Mandal, A.K. Bhaduri, and V. S. Sarma: Metall. Mater. Trans. A, 2012, vol. 43, pp 2056-68.CrossRefGoogle Scholar
  50. 50.
    H. Hallberg: Metals, 2011, vol. 1, pp. 16-48.CrossRefGoogle Scholar
  51. 51.
    Y. Zhang, S. Jiang, Y. Liang, and L. Hu: Comp. Mater. Sci., 2013, vol. 71, pp. 124-34.CrossRefGoogle Scholar
  52. 52.
    F. Chen, K. Qi, Z. Cui, and Z. Lai: Comp. Mater. Sci., 2014, vol. 83, pp. 331-40.CrossRefGoogle Scholar
  53. 53.
    E. Popova, Y. Staraselski, A. Brahme, R.K. Mishra, and K. Inal: Int. J. Plasticity, 2015, vol 66, pp. 85-102.CrossRefGoogle Scholar
  54. 54.
    E.R. Homer, V. Tikare, and E.A. Holm: Comp. Mater. Sci., 2013, vol. 69, pp. 414-23.CrossRefGoogle Scholar
  55. 55.
    H. Hallberg: Model. Simul. Mater. Sc., 2013, vol. 21, pp. 1-25.CrossRefGoogle Scholar
  56. 56.
    S. Hore, S.K. Das, S. Banerjee, and S. Mukherjee: Acta Mater., 2013, vol. 61, pp. 7251-59.CrossRefGoogle Scholar
  57. 57.
    A.D. Rollett, M.J. Luton, and D.J. Srolovitz: Acta Metall. Mater., 1992, vol. 40, pp. 43-55.CrossRefGoogle Scholar
  58. 58.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mat. Sci. Eng. A-Struct, 1997, vol. 238, pp. 219-74.CrossRefGoogle Scholar
  59. 59.
    P. Peczak and M. Luton: Acta Metall. Mater., 1993, vol. 41, pp. 59.CrossRefGoogle Scholar
  60. 60.
    R.A. Petkovic, M.J. Luton, and J.J. Jonas: Can. Metall. Quart., 1975, vol. 14, pp. 137-45.CrossRefGoogle Scholar
  61. 61.
    J.J. Jonas: Mat. Sci. Eng. A-Struct., 1994, vol. 184, pp. 155-65.CrossRefGoogle Scholar
  62. 62.
    ASTM Standard A240-A240M, 2013c.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Megan Beck
    • 1
  • Michael Morse
    • 1
  • Caleb Corolewski
    • 1
  • Koyuki Fritchman
    • 1
  • Chris Stifter
    • 1
  • Callum Poole
    • 1
  • Michael Hurley
    • 1
  • Megan Frary
    • 1
    Email author
  1. 1.Materials Science and Engineering DepartmentBoise State UniversityBoiseUSA

Personalised recommendations