Advertisement

Metallurgical and Materials Transactions A

, Volume 48, Issue 6, pp 2949–2959 | Cite as

Dehydrogenation and Sintering of TiH2: An In Situ Study

  • Gang Chen
  • Klaus D. Liss
  • Graeme Auchterlonie
  • Huiping Tang
  • Peng CaoEmail author
Article

Abstract

This first-ever study investigated dehydrogenation and microstructural evolution of TiH2 during sintering under vacuum using in situ neutron diffraction, in situ transmission electron microscopy, and ex situ neutron tomography. The densification behavior, microstructure, hydrogen concentration, and in situ phase transformation were reported. The shrinkage, weight loss percentage, and densification of the TiH2 powder compact monotonically increase with sintering temperature, while the open porosity behaves differently; porosity first increases at the initial sintering stage and then decreases during further sintering. The in situ phase transformation observations reveal that dehydrogenation starts from the outer area of either a particle or a powder compact and progressively carries forward into the interior of the particle or the compact. A shrinking core model was proposed to elucidate the dehydrogenation process for a single particle and a powder compact.

Keywords

Dehydrogenation Neutron Diffraction Titanium Hydride Shrink Core Model Neutron Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank the financial support from the Ministry of Business Innovation and Employment (MBIE), New Zealand. We acknowledge the support of the Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), in providing the neutron research facilities used in this work. The authors also wish to thank the Australian Institute of Nuclear Science and Engineering (AINSE) Ltd. for providing financial assistance (award No. P3430) to us for conducting work on WOMBAT and DINGO. The University of Queensland is acknowledged for providing the access to the Tecnai F20 TEM facility. GC also appreciates the funding from Shaanxi Youth Science and Technology New Star Project (No.: 2016KJXX-78), and Shaanxi Science and Technology Co-ordination and Innovation Project (No.: 2016KTCQ01-113). This work is also supported by State Key Laboratory for Powder Metallurgy, Central South University, Changsha, P.R. China.

References

  1. 1.
    R.F. Geisendorfer: in Powder Metallurgy of Titanium Alloys, F.H. Froes and J.E. Smugeresky, eds., Metallurgical Society of AIME, Warrendale, 1980, pp. 151–62.Google Scholar
  2. 2.
    C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (Wiley, Weinheim, 2003)CrossRefGoogle Scholar
  3. 3.
    D. Banerjee, J.C. Williams, Acta Mater. 61, 844–79 (2013)CrossRefGoogle Scholar
  4. 4.
    O.M. Ivasishin, A.N. Demidik, D.G. Savvakin, Powder Metall. Metal Ceram. 38, 482–87 (1999)CrossRefGoogle Scholar
  5. 5.
    O.M. Ivasishin, V.M. Anokhin, A.N. Demidik, D.G. Savvakin, Key Eng. Mater. 188, 55–62 (2000)CrossRefGoogle Scholar
  6. 6.
    O.M. Ivasishin, D.G. Savvakin, F.H. Froes, V.C. Mokson, K.A. Bondareva, Powder Metall. Metal Ceram. 41, 382–90 (2002)CrossRefGoogle Scholar
  7. 7.
    G. Chen, N. Edmonds, P. Cao, Int. J Powder Metall. 51, 39–50 (2015)Google Scholar
  8. 8.
    G. Chen, K.-D. Liss, P. Cao, Acta Mater. 67, 32–44 (2014)CrossRefGoogle Scholar
  9. 9.
    O. Ivasishin and V. Moxson: in Titanium Powder Metallurgy, M. Qian and F.H. Froes, eds., Butterworth-Heinemann, Boston, 2015, pp. 117–48.Google Scholar
  10. 10.
    B. Viswanathan, S.S. Murthy, M.V.C. Sastri, Metal Hydrides: Fundamentals and Applications, 1st edn. (Springer, Berlin, 1999)Google Scholar
  11. 11.
    C.R.F. Azevedo, D. Rodrigues, F. Beneduce Neto, J. Alloys Compd. 353, 217–27 (2003)CrossRefGoogle Scholar
  12. 12.
    H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J.M. Zhang, Q. Zhao, Key Eng. Mater. 436, 157–63 (2010)CrossRefGoogle Scholar
  13. 13.
    K.-D. Liss, R.E. Whitfield, W. Xu, T. Buslaps, L.A. Yeoh, X. Wu, D. Zhang, K. Xia, J. Synchrotron Radiat. 16, 825–34 (2009)CrossRefGoogle Scholar
  14. 14.
    G. Chen, P. Cao, Metall. Mater. Trans. A 44A, 5630–33 (2013)CrossRefGoogle Scholar
  15. 15.
    G. Chen, P. Cao, N. Edmonds, Mater. Sci. Eng. A 582, 117–25 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Banhart, Prog. Mater. Sci. 46, 559–632 (2001)CrossRefGoogle Scholar
  17. 17.
    V. Bhosle, E.G. Baburaj, M. Miranova, K. Salama, Mater. Sci. Eng. A 356, 190–99 (2003)CrossRefGoogle Scholar
  18. 18.
    V. Bhosle, E.G. Baburaj, M. Miranova, K. Salama, Metall. Mater. Trans. A 34A, 2793–99 (2003)CrossRefGoogle Scholar
  19. 19.
    H.R.Z. Sandim, B.V. Morante, P.A. Suzuki, Mater. Res. 8, 293–97 (2005)CrossRefGoogle Scholar
  20. 20.
    H. Liu, P. He, J.C. Feng, J. Cao, Int. J. Hydrogen Energy 34, 3018–25 (2009)CrossRefGoogle Scholar
  21. 21.
    I.M. Robertson, G.B. Schaffer, Powder Metall. 53, 27–33 (2010)CrossRefGoogle Scholar
  22. 22.
    I.M. Robertson, G.B. Schaffer, Powder Metall. 53, 12–19 (2010)CrossRefGoogle Scholar
  23. 23.
    S.L. Wu, X.M. Liu, K.W.K. Yeung, T. Hu, Z.S. Xu, J.C.Y. Chung, P.K. Chu, Acta Biomater. 7, 1387–97 (2011)CrossRefGoogle Scholar
  24. 24.
    D. Mandrino, I. Paulin, S.D. Škapin, Mater. Charact. 72, 87–93 (2012)CrossRefGoogle Scholar
  25. 25.
    M.W. Ma, L. Liang, L. Wang, Y. Wang, Y.L. Cheng, B.H. Tang, W. Xiang, X.H. Tan, Int. J. Hydrogen Energy 40, 8926–34 (2015)CrossRefGoogle Scholar
  26. 26.
    C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, J. Banhart, Acta Mater. 59, 6318–30 (2011)CrossRefGoogle Scholar
  27. 27.
    K.-D. Liss, A. Bartels, A. Schreyer, H. Clemens, Textures Microstruct. 35, 219–52 (2003)CrossRefGoogle Scholar
  28. 28.
    T. Schmoelzer, K.D. Liss, P. Staron, S. Mayer, H. Clemens, Adv. Eng. Mater. 13, 685–99 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Authier, S. Lagomarsino, B.K. Tanner, X-ray and Neutron Dynamical Diffraction: Theory and Applications (Springer Science & Business Media, New York, 2012)Google Scholar
  30. 30.
    C. Jiménez, F. Garcia-Moreno, A. Rack, R. Tucoulou, M. Klaus, B. Pfretzschner, T. Rack, P. Cloetens, J. Banhart, Scripta Mater. 66, 757–60 (2012)CrossRefGoogle Scholar
  31. 31.
    C.W. Schoenfelder, J.H. Swisher, J. Vacuum Sci. Technol. 10, 862–70 (1973)CrossRefGoogle Scholar
  32. 32.
    U. Kaess, G. Majer, M. Stoll, D.T. Peterson, R.G. Barnes, J. Alloys Compd. 259, 74–82 (1997)CrossRefGoogle Scholar
  33. 33.
    D.T. Peterson, H.M. Herro, Metall. Trans. 18A, 249–54 (1987)CrossRefGoogle Scholar
  34. 34.
    G. Chen, K.-D. Liss, P. Cao, Metall. Mater. Trans. A 46A, 5887–99 (2015)CrossRefGoogle Scholar
  35. 35.
    A.J. Studer, M.E. Hagen, T.J. Noakes, Phys. B: Condens. Matter 385–386, 1013–15 (2006)CrossRefGoogle Scholar
  36. 36.
    U. Garbe, T. Randall, C. Hughes, G. Davidson, S. Pangelis, S.J. Kennedy, Phys. Procedia 69, 27–32 (2015)CrossRefGoogle Scholar
  37. 37.
    B. Predel: in Ga-Gd…Hf-Zr, O. Madelung, ed., Springer, Berlin, 1996, pp. 1–2.Google Scholar
  38. 38.
    E. Illeková, J. Harnúšková, R. Florek, F. Simančík, I. Maťko, P. Švec Sr., J. Therm. Anal. Calorim. 105, 583–90 (2011)CrossRefGoogle Scholar
  39. 39.
    M.T. Malachevsky, C.A. D’Ovidio, Scripta Mater. 61, 1–4 (2009)CrossRefGoogle Scholar
  40. 40.
    I. Paulin, Č. Donik, D. Mandrino, M. Vončina, M. Jenko, Vacuum 86, 608–13 (2012)CrossRefGoogle Scholar
  41. 41.
    H. Okamoto, J. Phase Equilib. Diffus. 32, 174–75 (2011)CrossRefGoogle Scholar
  42. 42.
    P. Vizcaíno, I.A. Lopez Vergara, A.D. Banchik, J.P. Abriata, Int. J. Hydrogen Energy 40, 16928–37 (2015)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Gang Chen
    • 2
    • 5
  • Klaus D. Liss
    • 3
  • Graeme Auchterlonie
    • 4
  • Huiping Tang
    • 2
  • Peng Cao
    • 1
    Email author
  1. 1.Department of Chemical and Materials EngineeringThe University of AucklandAucklandNew Zealand
  2. 2.State Key Laboratory of Porous Metal MaterialsNorthwest Institute for Nonferrous Metal ResearchXi’anPeople’s Republic of China
  3. 3.Australian Nuclear Science and Technology OrganisationLucas HeightsAustralia
  4. 4.Centre for Microscopy and MicroanalysisThe University of QueenslandSt. LuciaAustralia
  5. 5.State Key Laboratory for Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations