Advertisement

Metallurgical and Materials Transactions A

, Volume 48, Issue 5, pp 2349–2362 | Cite as

Microstructure and Texture Development during Cold Rolling in UNS S32205 and UNS S32760 Duplex Stainless Steels

  • Amit Kumar
  • Rajesh Kisni Khatirkar
  • Darshan Chalapathi
  • Gulshan Kumar
  • Satyam Suwas
Article

In the present study, microstructure and texture evolution during cold rolling in UNS S32205 and UNS S32760 duplex stainless steel was investigated. Both steels were unidirectionally cold rolled up to 80 pct thickness reduction. Scanning electron microscopy and electron backscattered diffraction (EBSD) were used for microstructural characterization, while X-ray diffraction (XRD) was used for the measurement of bulk texture. Strain-induced martensite (SIM) was identified and quantified with the help of magnetic measurements (B–H curve and magnetization saturation). With the increase in plastic strain, the grains became morphologically elongated along the rolling direction with the reduction in average band thickness and band spacing. SIM increased with the increase in deformation and was found to be a function of strain and the SFE of austenite. The increase in SIM was much more pronounced in UNS S32205 steel as compared to UNS S32760 steel. After cold rolling, strong α-fiber (RD//〈110〉) texture was developed in ferrite, while brass texture was dominant in austenite for both steels. The strength of texture components and fibers was stronger in UNS S32760 steel. Another significant feature was the development of weak γ-fiber (ND//〈111〉) in UNS S32760 steel at intermediate deformation.

Keywords

Ferrite Austenite Shear Band Cold Rolling Stack Fault Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are thankful to The Director, VNIT Nagpur, for his constant encouragement to publish this article. The authors acknowledge the use of the National Facility of Texture & OIM (a DST-IRPHA facility) for the EBSD and bulk texture measurements. One of the authors (RKK) acknowledges the Science and Engineering Research Board (SERB) for financial assistance (Grant No. SB/FTP/ETA-0188/2014) to carry out this work. The help of Dr. Satish Shekhawat with performing the magnetic measurements is also gratefully acknowledged. RKK also acknowledges the University Grant Commission’s Networking Resource Centre for Materials (UGC-NRCM) for financial assistance.

References

  1. 1.
    R. Gunn: Duplex Stainless Steels, Abington Publishing, Cambridge, England, 1997.CrossRefGoogle Scholar
  2. 2.
    T.H. Chen and J.R. Yang: Mater. Sci. Eng. A, 2001, vol. 311, pp. 28–41.CrossRefGoogle Scholar
  3. 3.
    D.M. Escriba, E. Materna-Morris, R.L. Plaut, and A.F. Padilha: Mater. Charact., 2009, vol. 60, pp. 1214–19.CrossRefGoogle Scholar
  4. 4.
    A. Kashiwar, N.P. Vennela, S.L. Kamath, and R.K. Khatirkar: Mater. Charact., 2012, vol. 74, pp. 55–63.CrossRefGoogle Scholar
  5. 5.
    K. Datta, R. Delhez, P.M. Bronsveld, J. Beyer, H.J.M. Geijselaers, and J. Post: Acta Mater., 2009, vol. 57, pp. 3321–26.CrossRefGoogle Scholar
  6. 6.
    M. Humbert, B. Petit, B. Bolle, and N. Gey: Mater. Sci. Eng. A, 2007, vols. 454–455, pp. 508–17.CrossRefGoogle Scholar
  7. 7.
    K. Spencer: The Work Hardening of Austenitic Stainless Steel, Applied to the Fabrication of High-Strength Conductors, McMaster University, Hamilton, ON, Canada, 2004.Google Scholar
  8. 8.
    J. Talonen: Effect of Strain-Induced α′-Martensite Transformation on Mechanical Properties of Metastable Austenitic Stainless Steels, Helsinki University of Technology, Espoo, Finland, 2007.Google Scholar
  9. 9.
    J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.CrossRefGoogle Scholar
  10. 10.
    P. Bassani and M. Breda: Microscopy, 2013, vol. 9, pp. 988–95.Google Scholar
  11. 11.
    J. Talonen, P. Aspegren, and H. Hänninen: Mater. Sci. Technol., 2004, vol. 20, pp. 1506–12.CrossRefGoogle Scholar
  12. 12.
    S.S.M. Tavares, M.R. da Silva, J.M. Pardal, H.F.G. Abreu, and A.M. Gomes: J. Mater. Process. Technol., 2006, vol. 180, pp. 318–22.CrossRefGoogle Scholar
  13. 13.
    S. Pramanik, S. Bera, and S.K. Ghosh: Steel Res. Int., 2014, vol. 85, pp. 776–83.CrossRefGoogle Scholar
  14. 14.
    B.D. Cullity: Elements of X-ray Diffraction, Addison-Wesley Publishing Company Inc., Boston, MA, 1978.Google Scholar
  15. 15.
    C. Herrera, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 4653–64.CrossRefGoogle Scholar
  16. 16.
    A. Belyakov, Y. Kimura, and K. Tsuzaki: Acta Mater., 2006, vol. 54, pp. 2521–32.CrossRefGoogle Scholar
  17. 17.
    M. Breda, K. Brunelli, F. Grazzi, A. Scherillo, and I. Calliari: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 577–86.CrossRefGoogle Scholar
  18. 18.
    R. Badji, B. Bacroix, and M. Bouabdallah: Mater. Charact., 2011, vol. 62, pp. 833–43.CrossRefGoogle Scholar
  19. 19.
    J.D. Kordatos, G. Fourlaris, and G. Papadimitriou: Scripta Mater., 2001, vol. 44, pp. 401–08.CrossRefGoogle Scholar
  20. 20.
    C.M. Souza, H.F.G. Abreu, S.S.M. Tavares, and J.M. Rebello: Mater. Charact., 2008, vol. 59, pp. 1301–06.CrossRefGoogle Scholar
  21. 21.
    J. Hamada and N. Ono: Mater. Trans., 2010, vol. 51, pp. 635–43.CrossRefGoogle Scholar
  22. 22.
    J. Ryś and A. Zielińska-Lipiec: Arch. Metall. Mater., 2012, vol. 57, pp. 1041–53.Google Scholar
  23. 23.
    J. Keichel, J. Foct, and G. Gottstein: ISIJ Int., 2003, vol. 43, pp. 1788–94.CrossRefGoogle Scholar
  24. 24.
    R. Garg, S. Ranganathan, and S. Suwas: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4582–92.CrossRefGoogle Scholar
  25. 25.
    C. Donadille, R. Valle, P. Dervin, and R. Penelle: Acta Metall., 1989, vol. 37, pp. 1547–71.CrossRefGoogle Scholar
  26. 26.
    P.P. Bhattacharjee, M. Zaid, G.D. Sathiaraj, and B. Bhadak: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2180–91.CrossRefGoogle Scholar
  27. 27.
    M. Zaid and P.P. Bhattacharjee: ISIJ Int., 2014, vol. 54, pp. 2844–53.CrossRefGoogle Scholar
  28. 28.
    A. Belyakov, R. Kaibyshev, Y. Kimura, and K. Tsuzaki: Mater. Sci. Forum, 2010, vol. 638–642, pp. 1905–10.CrossRefGoogle Scholar
  29. 29.
    M.K. Blicharski, J. Jura, T. Baudin, and J. Bonarski: Arch. Metall. Mater., 2005, vol. 50, pp. 495-502.Google Scholar
  30. 30.
    ASM Handbook: Metallography and Microstructures, ASM INTERNATIONAL, Materials Park, OH, 2004.Google Scholar
  31. 31.
    OIM: Analysis Version 7.2. User Manual, TexSEM Laboratories Inc., Draper, 2013.Google Scholar
  32. 32.
    S.I. Wright, M.M. Nowell, and D.P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316–29.CrossRefGoogle Scholar
  33. 33.
    A.J. Schwartz, M. Kumar, A.L. Adams, and D.P. Field: Electron Backscatter Diffraction in Materials Science, Kluwer Academic/Plenum Publishers, Springer, New York, NY, 2000.CrossRefGoogle Scholar
  34. 34.
    P. Van Houtte: TheMTM-FHM” Software System Version 2 (2009).Google Scholar
  35. 35.
    H.J. Bunge: Texture Analysis in Materials Science, Butterworth & Co., London, 1982.Google Scholar
  36. 36.
    S.S.M. Tavares, P.D.S. Pedrosa, J.R. Teodósio, M.R. Da Silva, J.M. Neto, and S. Pairis: J. Alloys Compd., 2003, vol. 351, pp. 283–88.CrossRefGoogle Scholar
  37. 37.
    S.S.M. Tavares, J.M. Pardal, J.A. de Souza, J.M. Neto, and M.R. da Silva: J. Alloys Compd., 2006, vol. 416, pp. 179–82.CrossRefGoogle Scholar
  38. 38.
    W. Solano-Alvarez, H.F.G. Abreu, M.R. Da Silva, and M.J. Peet: J. Magn. Magn. Mater., 2015, vol. 378, pp. 200–05.CrossRefGoogle Scholar
  39. 39.
    R.P. Reed and R.E. Schramm: J. Appl. Phys., 1974, vol. 45, pp. 4705–11.CrossRefGoogle Scholar
  40. 40.
    R.P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345–51.Google Scholar
  41. 41.
    K. Kapoor, D. Lahiri, I.S. Batra, S.V.R. Rao, and T. Sanyal: Mater. Charact., 2005, vol. 54, pp. 131–40.CrossRefGoogle Scholar
  42. 42.
    B.E. Warren: Progr. Met. Phys., 1959, vol. 8, pp. 147–202.CrossRefGoogle Scholar
  43. 43.
    Y.H. Dong and P. Scardi: J. Appl. Cryst., 2000, vol. 33, pp. 184–89.CrossRefGoogle Scholar
  44. 44.
    FERITSCOPE® FMP30 Measurement of the Ferrite Content in Austenitic and Duplex Steel, Fischer (2014).Google Scholar
  45. 45.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, United Kingdom, 2015.Google Scholar
  46. 46.
    R.K. Ray and Satyam Suwas: Crystallographic Texture of Materials, Springer, Manchester, United Kingdom, 2014.Google Scholar
  47. 47.
    W. Reick, M. Pohl, and A.F. Padilha: Steel Res., 1996, vol. 67, pp. 253–56.CrossRefGoogle Scholar
  48. 48.
    L.C.M. Gilapa: J. Achiev. Mater. Manuf. Eng., 2012, vol. 55, pp. 679–84.Google Scholar
  49. 49.
    L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13A, pp. 627–35.CrossRefGoogle Scholar
  50. 50.
    B. Verlinden, J. Driver, I. Samajdar, and R. Doherty: Thermo-Mechanical Processing of Metallic Materials, Elsevier, New York, NY, 2007.Google Scholar
  51. 51.
    R. Khatirkar, B. Vadavadagi, S.K. Shekhawat, and A. Haldar: ISIJ Int., 2012, vol. 52, pp. 884–93.CrossRefGoogle Scholar
  52. 52.
    C.U. Jeong, W. Woo, J.Y. Choi, and S. Choi: Acta Mater., 2014, vol. 67, pp. 21–31.CrossRefGoogle Scholar
  53. 53.
    N.P. Gurao and S. Suwas: Sci. Rep., 2014, vol. 4, pp. 01–08.CrossRefGoogle Scholar
  54. 54.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.CrossRefGoogle Scholar
  55. 55.
    L. Saraf: Microsc. Microanal., 2014, vol. 17, pp. 424–25.CrossRefGoogle Scholar
  56. 56.
    H. Li, E. Hsu, J. Szpunar, H. Utsunomiya, and T. Sakai: J. Mater. Sci., 2008, vol. 43, pp. 7148–56.CrossRefGoogle Scholar
  57. 57.
    P.J. Rajasekhara, S. Ferreira, L.P.K. Karjalainen, in 6th European Stainless Steel Conference Proceedings, 2008, pp. 511–17.Google Scholar
  58. 58.
    T.S. Chern, K.H. Tseng, and H.L. Tsai: Mater. Des., 2011, vol. 32, pp. 255–63.CrossRefGoogle Scholar
  59. 59.
    J. Niagaj and Ł. Mazur: Arch. Metall. Mater., 2012, vol. 57, pp. 16–18.Google Scholar
  60. 60.
    B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials, Wiley Publication, Hoboken, NJ, 2009.Google Scholar
  61. 61.
    C.G. Rhodes and A.W. Thompson: Metall. Trans. A, 1977, vol. 8A, pp. 1901–06.CrossRefGoogle Scholar
  62. 62.
    N.P. Gurao and Satyam Suwas: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 809–27.CrossRefGoogle Scholar
  63. 63.
    X. Liu, X.P. Ding, Y.L. He, L. Li, H.M. Song, and J.C. Hu: J. Iron Steel Res. Int., 2010, vol. 17, pp. 45–49.CrossRefGoogle Scholar
  64. 64.
    I. Samajdar, P. Ratchev, B. Verlinden, and E. Aernoudt: Acta Mater., 2001, vol. 49, pp. 1759–69.CrossRefGoogle Scholar
  65. 65.
    T. Leffers and R.K. Ray: Progr. Mater. Sci., 2009, vol. 54, pp. 351–96.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringVisvesvaraya National Institute of Technology (VNIT)NagpurIndia
  2. 2.Department of Mechanical EngineeringThapar UniversityPatialaIndia
  3. 3.Department of Materials EngineeringIndian Institute of Science (IISc)BengaluruIndia

Personalised recommendations