Metallurgical and Materials Transactions A

, Volume 48, Issue 4, pp 1524–1527 | Cite as

Innovative Technology for Preparation of Seamless Nitinol Tubes Using SHS Without Forming

  • Pavel SalvetrEmail author
  • Zuzana Pecenová
  • Andrea Školáková
  • Pavel Novák


This paper presents innovative technology for the production of seamless Ni-Ti tubes using self-propagating high-temperature synthesis (SHS). The proposed production technology is a unique method which removes the need of forming operations, reduces machining processes, and at the same time it eliminates the negatives of production Ni-Ti alloys by conventional melting methods. The proposed process consists in SHS reaction in evacuated silica tube with the use of extremely high heating rate (over 300 K min−1).


Shape Memory Combustion Wave Thermal Explosion High Heating Rate Silica Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


The authors acknowledge the financial support from specific university research (MSMT No 20-SVV/2016) and Czech Science Foundation, Project No. 14-03044S.


  1. 1.
    T. Duerig, A. Pelton, D. Stöckel: Mater. Sci. Eng., A, 1999, vol. 273–275, pp. 149-60.CrossRefGoogle Scholar
  2. 2.
    J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson: Mater. & Des., 2014, vol. 56, pp. 1078-113.CrossRefGoogle Scholar
  3. 3.
    N.B. Morgan: Mater. Sci. Eng., A, 2004, vol. 378, pp. 16-23.CrossRefGoogle Scholar
  4. 4.
    G.F. Andreasen, T.B. Hilleman: J. Am. Dent. Association, 1971, vol. 82, pp. 1373-5.CrossRefGoogle Scholar
  5. 5.
    R. Pfeifer, C.W. Müller, C. Hurschler, S. Kaierle, V. Wesling, H. Haferkamp: Procedia CIRP, 2013, vol. 5, pp. 253-8.CrossRefGoogle Scholar
  6. 6.
    S. Kujala, J. Ryhänen, T. Jämsä, A. Danilov, J. Saaranen, A. Pramila, J. Tuukkanen: Biomaterials, 2002, vol. 23, pp. 2535-43.CrossRefGoogle Scholar
  7. 7.
    X. Wang, Y. Bellouard, J.J. Vlassak: Acta Mater., 2005, vol. 53, pp. 4955-61.CrossRefGoogle Scholar
  8. 8.
    I.Y. Khmelevskaya, E.P. Ryklina, S.D. Prokoshkin, G.A. Markossian, E.P. Tarutta, E.N. Iomdina: Mater. Sci. Eng., A, 2008, vol. 481–482, pp. 651-3.CrossRefGoogle Scholar
  9. 9.
    M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri: Prog. Mater. Sci., 2012, vol. 57, pp. 911-46.CrossRefGoogle Scholar
  10. 10.
    B.S. Shariat, Y. Liu, G. Rio: Intermetallics, 2014, vol. 50, pp. 59-64.CrossRefGoogle Scholar
  11. 11.
    S.M. Russel, Nitinol melting and fabrication, Proc. of the Int. Conf. on Shape Mememory and Superelastic Technologies, Pacific Grove, California, 2000, pp. 1–9.Google Scholar
  12. 12.
    H.W. Ming, Fabrication of Nitinol Materials and Components, Proc. of the Int. Con. on Superelastic Technol., Kunming, 2001, pp. 285–92.Google Scholar
  13. 13.
    L. McD. Schetky, M.H. Wu, Issues in the Further Development of Nitinol Properties And Processing for Medical Device Applications, Memry Corporation, Bethel, CT. Published in Proc., ASM Materials & Processes for Medical Devices Conference, Anaheim, 2003.Google Scholar
  14. 14.
    G. Chen, K.-D. Liss, P. Cao: Acta Mater., 2014, vol. 67, pp. 32-44.CrossRefGoogle Scholar
  15. 15.
    M. Whitney, S.F. Corbin, R.B. Gorbet: Acta Mater., 2008, vol. 56, pp. 559-70.CrossRefGoogle Scholar
  16. 16.
    P. Novák, T. Veselý, I. Marek, P. Dvořák, V. Vojtěch, P. Salvetr, M. Karlík, P. Haušild, J. Kopeček: Metall. Mater. Trans. B, 2016, vol. 47, pp. 932-8.CrossRefGoogle Scholar
  17. 17.
    G. Chen, P. Cao, N. Edmonds: Mater. Sci. Eng., A, 2013, vol. 582, pp. 117-25.CrossRefGoogle Scholar
  18. 18.
    B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter: Acta Mater., 2000, vol. 48, pp. 3895-904.CrossRefGoogle Scholar
  19. 19.
    M. Adeli, M. Mahvi, K. Rezaei Jahromi, M.R. Aboutalebi, S.H. Seyedein: Advances in Materials and Processing Technologies, 2016, vol. 2, pp. 266-71.Google Scholar
  20. 20.
    P. Novák, H. Moravec, P. Salvetr, F. Průša, J. Drahokoupil, J. Kopeček, M. Karlík, T.F. Kubatík: Mater. Sci. Technol., 2015, vol. 31, pp. 1886-93.CrossRefGoogle Scholar
  21. 21.
    F.K. Urakaev, K.A. Akmalaev, E.S. Orynbekov, B.D. Balgysheva, D.N. Zharlykasimova: Metall. Mater. Trans. B, 2016, vol. 47, pp. 58-66.CrossRefGoogle Scholar
  22. 22.
    T.B. Massalski (1990) Binary alloy phase diagrams. Materials Park, OH: ASM International.Google Scholar
  23. 23.
    Y.-h. Li, L.-j. Rong, Y.-y. Li: J. Alloys Compd., 2001, vol. 325, pp. 259-62.CrossRefGoogle Scholar
  24. 24.
    P. Novák, A. Michalcová, J. Šerák, D. Vojtěch, T. Fabián, S. Randáková, F. Průša, V. Knotek, M. Novák: J. Alloys Compd., 2009, vol. 470, pp. 123-6.CrossRefGoogle Scholar
  25. 25.
    G. Tosun, N. Orhan, L. Özler: Mater. Lett., 2012, vol. 66, pp. 138-40.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Pavel Salvetr
    • 1
    Email author
  • Zuzana Pecenová
    • 1
  • Andrea Školáková
    • 1
  • Pavel Novák
    • 1
  1. 1.Department of Metals and Corrosion EngineeringUniversity of Chemistry and TechnologyPrague 6Czech Republic

Personalised recommendations