Metallurgical and Materials Transactions A

, Volume 48, Issue 4, pp 1827–1840 | Cite as

Statistical Study to Evaluate the Effect of Processing Variables on Shrinkage Incidence During Solidification of Nodular Cast Irons

  • J. M. Gutiérrez
  • A. Natxiondo
  • J. Nieves
  • A. Zabala
  • J. Sertucha


The study of shrinkage incidence variations in nodular cast irons is an important aspect of manufacturing processes. These variations change the feeding requirements on castings and the optimization of risers’ size is consequently affected when avoiding the formation of shrinkage defects. The effect of a number of processing variables on the shrinkage size has been studied using a layout specifically designed for this purpose. The β parameter has been defined as the relative volume reduction from the pouring temperature up to the room temperature. It is observed that shrinkage size and β decrease as effective carbon content increases and when inoculant is added in the pouring stream. A similar effect is found when the parameters selected from cooling curves show high graphite nucleation during solidification of cast irons for a given inoculation level. Pearson statistical analysis has been used to analyze the correlations among all involved variables and a group of Bayesian networks have been subsequently built so as to get the best accurate model for predicting β as a function of the input processing variables. The developed models can be used in foundry plants to study the shrinkage incidence variations in the manufacturing process and to optimize the related costs.


Root Mean Square Error Bayesian Network Riser Nodular Cast Iron Nodule Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work has been supported by the Centro para el Desarrollo Tecnológico Industrial (CDTI) of the Spanish Government (Ref. IDI-20150535). The authors would also like to thank Casting Ros, S. A. Foundry for all the collaborating efforts made in the experimental work.


  1. 1.
    N. S. Tiedje: Mat. Sci. Technol., 2010, vol. 26, pp 505-14.CrossRefGoogle Scholar
  2. 2.
    P. Larrañaga, J. Sertucha, R. Suárez: Rev. Metal., 2006, vol. 42, pp 244-55.CrossRefGoogle Scholar
  3. 3.
    A. Tadesse, H. Fredriksson: Mat. Sci. Forum, 2014, vol. 790-791, pp 447-51.CrossRefGoogle Scholar
  4. 4.
    G. Alonso, A. Loizaga, G. Zarrabeitia, D.M. Stefanescu, and R. Suárez: AFS Trans., (2014) vol. 122, paper 14-006Google Scholar
  5. 5.
    M. Hecht: Editions Techniques des Industries de Fonderie, (CTIF, 2008)Google Scholar
  6. 6.
    S. I. Karsay: AFS Int. Cast Metals J., 1980, vol. 5, pp 45-51.Google Scholar
  7. 7.
    [7] D. M. Stefanescu, H. Q. Qiu, C. H. Chen: AFS Trans., 1995, vol. 103, pp 189-97.Google Scholar
  8. 8.
    R.V. Sillen: World Foundry Congress, Harrogate, 2006Google Scholar
  9. 9.
    R. W. Heine: AFS Trans., 1988, vol. 96, pp 413-22.Google Scholar
  10. 10.
    J.-M. Théret and G. Lesoult: Hommes et Fonderie, 1984, février, pp 19–30Google Scholar
  11. 11.
    G. Lesoult: Int. J. Cast Metal. Res., 2009, vol. 22, pp 2-7.CrossRefGoogle Scholar
  12. 12.
    T. Skaland: Int. J. Cast Metal. Res., 2003, vol. 16, pp 11-16.CrossRefGoogle Scholar
  13. 13.
    P. Larrañaga, J. M. Gutiérrez, A. Loizaga, J. Sertucha, R. Suárez: AFS Trans., 2008, vol. 116, pp 547-61.Google Scholar
  14. 14.
    J. M. Frost, D. M. Stefanescu: AFS Trans., 1992, vol. 100, pp 189-99.Google Scholar
  15. 15.
    T. Kanno, I. Kang, Y. Fukuda, T. Mizuki, and S. Kiguchi: AFS Trans., 2006, vol. 114, paper 06-084.Google Scholar
  16. 16.
    P. Zhu, R. W. Smith: AFS Trans., 1995, vol. 103, pp 601-09.Google Scholar
  17. 17.
    L. Battezzati, M. Baricco, C. A. Goria, G. Serramoglia, F. Marongiu: Int. J. Cast Metal. Res., 2003, vol. 16, pp 87-92.CrossRefGoogle Scholar
  18. 18.
    M. Castro, M. Herrera, M. M. Cisneros, G. Lesoult, J. Lacaze: Int. J. Cast Metal. Res., 1999, vol. 11, pp 369-74.CrossRefGoogle Scholar
  19. 19.
    T. Kanno, I. Kang, Y. Fukuda, M. Morinaka, and H. Nakae: AFS Trans., 2006, vol. 114, paper 06-083.Google Scholar
  20. 20.
    J. Sertucha, R. Suárez, J. Izaga, L. A. Hurtado, J. Legazpi: Int. J. Cast Metal. Res., 2006, vol. 19, pp 315-22.CrossRefGoogle Scholar
  21. 21.
    K. M. Pedersen, N. S. Tiedje: Int. J. Cast Metal. Res., 2007, vol. 20, pp 145-50.CrossRefGoogle Scholar
  22. 22.
    T. Bayes: Philosophical Transactions of the Royal Society, 1763, vol. 53, pp 370-418CrossRefGoogle Scholar
  23. 23.
    E. Castillo, J.M. Gutiérrez, A.S. Hadi: Expert Systems and Probabilistic Network Models, New York: Springer Science & Business Media, 2012.Google Scholar
  24. 24.
    J. Pearl and S. Russell: Computer Science Department, University of California, Los Angeles, Technical report R-216, 2000Google Scholar
  25. 25.
    C.M. Bishop: Neural Networks for Pattern Recognition, 1st ed., Oxford University Press, Oxford,1995.Google Scholar
  26. 26.
    C. M. Bishop: Pattern recognition and machine learning, 1st ed., Springer, New York, 2006.Google Scholar
  27. 27.
    G.H. John and P. Langley: 11st Conference on uncertainty in artificial intelligence, San Mateo, 1995, pp 338–45Google Scholar
  28. 28.
    G.F. Cooper and E. Herskovits: 7th Conference on Uncertainty in artificial intelligence, Los Angeles, 1991, pp 86–94Google Scholar
  29. 29.
    S. Russell, P. Norvig: Artificial Intelligence: A Modern Approach, Prentice-Hall, Egnlewood Cliffs, 2003.Google Scholar
  30. 30.
    R.R. Bouckaert: Bayesian belief Networks: From Construction to Inference, PhD thesis, Utrecht, 1995Google Scholar
  31. 31.
    U. B. Kjærulff, A. L. Madsen: Bayesian networks and influence diagrams: a guide to construction and analysis, 1st ed., Springer, New York, USA, 2008.CrossRefGoogle Scholar
  32. 32.
    S. V. Stehman: Remote Sens. Environ., 1997, vol. 62, pp 77-89CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • J. M. Gutiérrez
    • 1
  • A. Natxiondo
    • 1
  • J. Nieves
    • 1
  • A. Zabala
    • 1
  • J. Sertucha
    • 1
  1. 1.Ingeniería, I+D y Procesos Metalúrgicos, IK4-AZTERLANDurangoSpain

Personalised recommendations