Advertisement

Metallurgical and Materials Transactions A

, Volume 48, Issue 4, pp 2051–2061 | Cite as

Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations

  • Fengbo Han
  • Bin Tang
  • Xu Yan
  • Yifei Peng
  • Hongchao Kou
  • Jinshan Li
  • Ying Deng
  • Yong Feng
Article

Abstract

This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed.

Keywords

Slip System Critical Resolve Shear Stress Prismatic Slip Berkovich Indenter Grid Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the Natural Science Foundation of Shaanxi Province (2014JQ6216), the Fundamental Research Funds for the Central Universities in China (3102015BJ(II)JGZ005), the “111” Project (No. B08040), and the “Gao Feng” project for undergraduate.

References

  1. 1.
    A.A. Elmustafa and D.S. Stone, J. Mech. Phys. Solids 2003, vol. 51, pp. 357-381.CrossRefGoogle Scholar
  2. 2.
    Y. Wang, D. Raabe, C. Klüber and F. Roters, Acta Mater. 2004, vol. 52, pp. 2229-2238.CrossRefGoogle Scholar
  3. 3.
    G.B. Viswanathan, E. Lee, D.M. Maher, S. Banerjee and H.L. Fraser, Acta Mater. 2005, vol. 53, pp. 5101-5115.CrossRefGoogle Scholar
  4. 4.
    N. Zaafarani, D. Raabe, R.N. Singh, F. Roters and S. Zaefferer, Acta Mater. 2006, vol. 54, pp. 1863-1876.CrossRefGoogle Scholar
  5. 5.
    A.F. Gerday, M. Ben Bettaieb, L. Duchêne, N. Clément, H. Diarra and A.M. Habraken, Acta Mater. 2009, vol. 57, pp. 5186-5195.CrossRefGoogle Scholar
  6. 6.
    C. Reuber, P. Eisenlohr, F. Roters and D. Raabe, Acta Mater. 2014, vol. 71, pp. 333-348.CrossRefGoogle Scholar
  7. 7.
    B. Selvarajou, J.H. Shin, T.K. Ha, I. Choi, S.P. Joshi and H.N. Han, Acta Mater. 2014, vol. 81, pp. 358-376.CrossRefGoogle Scholar
  8. 8.
    F.B. Han, B. Tang, H.C. Kou, J.S. Li and Y. Feng, Materials Science and Engineering: A 2015, vol. 625, pp. 28-35.CrossRefGoogle Scholar
  9. 9.
    M. Liu, A.K. Tieu, C. Lu, H.T. Zhu and G.Y. Deng, Comput. Mater. Sci. 2014, vol. 81, pp. 30-38.CrossRefGoogle Scholar
  10. 10.
    C. Zambaldia, Y.Y. Yang, T.R. Bieler and D. Raabe, J. Mater. Res 2012, vol. 27, p. 357.Google Scholar
  11. 11.
    C. Zambaldi and D. Raabe, Acta Mater. 2010, vol. 58, pp. 3516-3530.CrossRefGoogle Scholar
  12. 12.
    T Seshacharyulu, S.C. Medeiros, W.G. Frazier and Y. Prasad, Materials Science and Engineering: A 2000, vol. 284, pp. 184-194.CrossRefGoogle Scholar
  13. 13.
    M. Vanderhasten, L. Rabet and B. Verlinden, Materials & design 2008, vol. 29, pp. 1090-1098.CrossRefGoogle Scholar
  14. 14.
    T.I. Wu and J.C. Wu, J. Alloys Compd. 2008, vol. 466, pp. 153-159.CrossRefGoogle Scholar
  15. 15.
    G.B. Viswanathan, E. Lee, D.M. Maher, S. Banerjee and H.L. Fraser, Materials Science and Engineering: A 2005, vol. 400–401, pp. 463-466.CrossRefGoogle Scholar
  16. 16.
    R.J. Asaro and A. Needleman, Acta Metall. 1985, vol. 33, pp. 923-953.CrossRefGoogle Scholar
  17. 17.
    D. Peirce, R.J. Asaro and A. Needleman, Acta Metall. 1983, vol. 31, pp. 1951-1976.CrossRefGoogle Scholar
  18. 18.
    J.W. Hutchinson, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1976, vol. 348, pp. 101-127.CrossRefGoogle Scholar
  19. 19.
    A. Acharya and A.J. Beaudoin, J. Mech. Phys. Solids 2000, vol. 48, pp. 2213-2230.CrossRefGoogle Scholar
  20. 20.
    M. Anahid, M.K. Samal and S. Ghosh, J. Mech. Phys. Solids 2011, vol. 59, pp. 2157-2176.CrossRefGoogle Scholar
  21. 21.
    F. Bachmann, R. Hielscher and H. Schaeben, Solid State Phenomena 2010, vol. 160, pp. 63-68.CrossRefGoogle Scholar
  22. 22.
    F. Bridier, D.L. McDowell, P. Villechaise and J. Mendez, Int. J. Plast 2009, vol. 25, pp. 1066-1082.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Fengbo Han
    • 1
  • Bin Tang
    • 1
  • Xu Yan
    • 1
  • Yifei Peng
    • 1
  • Hongchao Kou
    • 1
  • Jinshan Li
    • 1
  • Ying Deng
    • 2
  • Yong Feng
    • 1
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anP.R. China
  2. 2.Beijing Aeronautical Manufacturing Technology Research InstituteBeijingP.R. China

Personalised recommendations