Metallurgical and Materials Transactions A

, Volume 48, Issue 4, pp 1641–1652 | Cite as

Crack Growth Modeling and Life Prediction of Pipeline Steels Exposed to Near-Neutral pH Environments: Stage II Crack Growth and Overall Life Prediction

  • Jiaxi Zhao
  • Weixing Chen
  • Mengshan Yu
  • Karina Chevil
  • Reg Eadie
  • Jenny Been
  • Greg Van Boven
  • Richard Kania
  • Sean Keane
Article

Abstract

This investigation was initiated to provide governing equations for crack initiation, crack growth, and service life prediction of pipeline steels in near-neutral pH (NNpH) environments. This investigation develops a predictive model considering loading interactions occurring during oil and gas pipeline operation with underload-type variable pressure fluctuations. This method has predicted lifetimes comparable to the actual service lives found in the field. This is in sharp contrast with the predictions made by existing methods that are either conservative or inconsistent with the field observations. It has been demonstrated that large slash loads (R-ratio is 0.05), often seen during gas pipeline operation, are a major life-limiting factor and should be avoided where possible. Oil pipelines have shorter lifetime because of their more frequent pressure fluctuations and larger amplitude load cycles. The accuracy of prediction can be improved if pressure data with appropriate sampling intervals are used. The sampling interval error is much larger in the prediction of oil pipelines than gas pipelines because of their different compressibility but is minimized if the pressure sampling rate for the data is at or less than one minute.

Keywords

Crack Growth Rate Fatigue Crack Growth Stress Corrosion Crack Pressure Fluctuation Pipeline Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank TransCanada Pipeline Limited, Spectra Energy Transmission, Natural Science and Engineering Research Council of Canada, the Pipeline Research Council International (PRCI), and US Department of Transportation for financial support.

References

  1. 1.
    J.X. Zhao, W.X. Chen, M.S. Yu, K. Chevil, R. Eadie, G. Van Boven, R. Kania, J. Been, and S. Keane: Metall. Mater. Trans. A. DOI: 10.1007/s11661-016-3951-3.
  2. 2.
    W. X. Chen, R. Kania, R. Worthingham and G. Van Boven: Acta Mater., 2009, vol. 57, pp. 6200-6214.CrossRefGoogle Scholar
  3. 3.
    S.B. Lambert, J.A. Beavers, B. Delanty, R. Sutherby, and A. Plumtree: Proceedings of 3rd International Pipeline Conference, Calgary, 2000, pp. 961–65.Google Scholar
  4. 4.
    J.A. Beavers, Near-Neutral pH SCC: Dormancy and Re-Initiation of Stress Corrosion Cracks, GRI report #: GRI-7045, August 2004.Google Scholar
  5. 5.
    T. S. Srivatsan and T. S. Sudarshan: J. Mater. Sci., 1988, vol. 23, pp.1521-1533.CrossRefGoogle Scholar
  6. 6.
    J.F. Kiefner, and K.M. Kolovich: Predicting Times to Failure for ERW Seam Effects that Grow by Pressure-Cycle-Induced Fatigue, Final Report as the Deliverable of Subtask 2.5 on U.S. Department of Transportation, Other Transaction Agreement NO. DTPH56-11-T-000003, Final Report No. 13-021, January, 28, 2013.Google Scholar
  7. 7.
    Y.H. Zhang and S.J. Maddox: Int. J. Fatigue, 2009, vol. 31, pp. 138-152.CrossRefGoogle Scholar
  8. 8.
    J.X. Zhao, K. Chevil, M.S. Yu, J. Been, S. Keane, G. Van Boven, R. Kania, and W.X. Chen: J. Pipeline Syst. Eng., 04016007, 2016.Google Scholar
  9. 9.
    J.X. Zhao, W.X. Chen, S. Keane, J. Been, and G. Van Boven: Proceedings of the 2014: 10th International Pipeline Conference IPC2014, September 29–October 3, 2014, Calgary, Alberta, Canada.Google Scholar
  10. 10.
    B. S. Delanty and J. O’Beirne: Oil Gas J., 1992, vol. 15, pp. 39-44.Google Scholar
  11. 11.
    T. Kushida, K. Nose, H. Asahi, M. Kimura, Y. Yamane, S. Endo, and H. Kawano: Proceedings of Corrosion 2001. NACE, Houston (TX), 2001. Paper No. 01223.Google Scholar
  12. 12.
    S. H. Wang, W. X. Chen, F. King, T. R. Jack, R. R. Fessier: Corrosion, 2002, vol. 58, pp. 526-534.CrossRefGoogle Scholar
  13. 13.
    B. Y. Fang, R. L. Eadie, W. X. Chen and M. Elboujdaini: Corros. Eng. Sci. Tech., 2009, vol. 44, pp. 32-42.CrossRefGoogle Scholar
  14. 14.
    B.Y. Fang, R. L. Eadie, W. X. Chen and M. Elboujdaini: Corros. Eng. Sci. Tech., 2010, vol. 45, pp. 302-312.CrossRefGoogle Scholar
  15. 15.
    Z. Qin, B. Demko, J. Noel, D. Shoesmith, F. King, R. Worthingham and K. Keith: Corrosion, 2004, vol. 60, pp. 906-914.CrossRefGoogle Scholar
  16. 16.
    J.A. Beavers, J.T. Johnson, R.L. Sutherby: Proceedings of 3th International Pipeline Conference, vol. 2, Calgary, Canada, October 1–5, 2000, pp. 979–88.Google Scholar
  17. 17.
    G. Van Boven, W.X. Chen and R. Rogge: Acta Mater., 2007, vol. 55, pp. 29-42.CrossRefGoogle Scholar
  18. 18.
    B.T. Lu, and J.L. Luo: Corrosion, 2006, vol. 62, pp. 129-140.CrossRefGoogle Scholar
  19. 19.
    W. Zheng, D. Bibby, J. Li, J.T. Bowker, J.A. Gianetto, R.W. Revie, and G. Williams: Proceedings of 6th International Pipeline Conference, September 25–29, 2006, p. 95.Google Scholar
  20. 20.
    B. Fang, E. H. Han, J. Wang, W. Ke: Corrosion, 2007, vol. 63, pp.419-432.CrossRefGoogle Scholar
  21. 21.
    F. King, T. Jack, W.X. Chen, and S.H. Wang: Corrosion, 2001, NACE International, 11–16 March, Houston, Texas.Google Scholar
  22. 22.
    M.S. Yu, X. Xing, H. Zhang, J.X. Zhao, R. Eadie, W.X. Chen, J. Been, G. Van Boven and R. Kania: Acta Mater., 2015, vol. 96, pp.159-169.CrossRefGoogle Scholar
  23. 23.
    W.X. Chen and R. L. Sutherby: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1260-1268.CrossRefGoogle Scholar
  24. 24.
    X. Xing, W. X. Chen and H. Zhang: Mater. Lett., 2015, vol.152, pp. 86-89.CrossRefGoogle Scholar
  25. 25.
    M. Skorupa: Fatigue Fract. Eng. Mater. Struct., 1998, vol. 21, pp.987-1006.CrossRefGoogle Scholar
  26. 26.
    M. Skorupa: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 905-926.CrossRefGoogle Scholar
  27. 27.
    R.H. Christensen, Fatigue crack, fatigue damage and their directions, Metal Fatigue, McGraw-Hill, New York, 1959.Google Scholar
  28. 28.
    N.A. Fleck: Influence of stress state on crack growth retardation, Basic Questions on Fatigue, 1988, vol. 1, ASTM STP 924, pp. 157–83.Google Scholar
  29. 29.
    N.A. Fleck: Acta Metall., 1985, vol. 33, pp.1339-1354.CrossRefGoogle Scholar
  30. 30.
    J. Schijve and D. Broek: Aircra. Eng. Aerosp. Tec., 1962, vol. 34, pp.314-316.CrossRefGoogle Scholar
  31. 31.
    O.E. Wheeler: J. Basic Eng., 1972, vol.94, pp.181-186.CrossRefGoogle Scholar
  32. 32.
    J. Willenborg, R.M. Engle, and H.A. Wood: A crack growth retardation model using an effective stress concept, Report # AFFDL-TR71-1, Air Force Flight Dynamic Laboratory, Wright-Patterson Air Force Base, USA, 1971.Google Scholar
  33. 33.
    S.L. Ouk and Z. W. Chen: I. J. Korean Soc. Precis. Eng., 2002, vol.3, pp.72-77.Google Scholar
  34. 34.
    S. H. Wang and W. X. Chen: Mater. Sci. Eng. A, 2002, vol. 325, pp.144-151.CrossRefGoogle Scholar
  35. 35.
    S. H. Wang, Y. G. Zhang and W. X. Chen: J. Mater. Sci., 2001, vol. 36, pp.1931-1938.CrossRefGoogle Scholar
  36. 36.
    S. H. Wang and W. X. Chen: Mater. Sci. Eng. A, 2001, vol. 301, pp.147-153.CrossRefGoogle Scholar
  37. 37.
    C. D. Beachem: Met. Trans., 1972, vol. 3, pp.437-451.CrossRefGoogle Scholar
  38. 38.
    P. J. Ferreira, I. M. Robertson and H. K. Birnbaum: Acta Mater., 1999, vol. 47, pp. 2991-2998.CrossRefGoogle Scholar
  39. 39.
    T. M. Ahmed, S. B. Lambert, R. Sutherby and A. Plumtree: Corrosion, 1997, vol. 53, pp. 581-590.CrossRefGoogle Scholar
  40. 40.
    G. Van Boven, R. Sutherby, and F. King: Proceedings of 4th International Pipeline Conference, Sep 29–Oct 3, 2002, Calgary, Canada, IPC2002-27149.Google Scholar
  41. 41.
    J. Schijve: Fatigue of Structures and Materials: Second Edition with CD-ROM, Springer, Dordrecht, 2009.CrossRefGoogle Scholar
  42. 42.
    Standard practices for cycle counting in fatigue analysis, ASTM, E1049-85 (2011) e1.Google Scholar
  43. 43.
    J. Been, H. Lu, F. King, T. Jack, and R. Sutherby: Proceedings of Second International Conference on Environment-Induced Cracking of Metals (EICM-2), Banff, AB, September 20–23, Elsevier, 2004.Google Scholar
  44. 44.
    J. Been, R. Eadie, and R. Sutherby: Proceedings of the 2006 6th International Pipeline Conference IPC2006, September 25–29, Calgary, Alberta, Canada, IPC2006-10345.Google Scholar
  45. 45.
    A.T. Egbewande: Growth behavior of surface cracks in pipeline steels exposed to near-neutral pH environments. PhD thesis, University of Alberta, 2013.Google Scholar
  46. 46.
    J. X. Zhao, W. X. Chen, K. Chevil, J. Been, G. Van Boven, S. Keane and R. Kania: Effect of pressure sampling methods on pipeline integrity analysis. J. Pipeline Syst. Eng., Minor Revision, 2016.Google Scholar
  47. 47.
    M. Yu: Crack growth behavior of pipeline steels under variable pressure fluctuations in a near-neutral pH environment, PhD thesis, University of Alberta, 2015.Google Scholar
  48. 48.
    M. S. Yu et al. (unpublished data).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Jiaxi Zhao
    • 1
  • Weixing Chen
    • 1
  • Mengshan Yu
    • 1
  • Karina Chevil
    • 1
    • 2
  • Reg Eadie
    • 1
  • Jenny Been
    • 2
  • Greg Van Boven
    • 3
  • Richard Kania
    • 2
  • Sean Keane
    • 4
  1. 1.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.TransCanada PipelinesCalgaryCanada
  3. 3.Spectra Energy Transmission Ltd.VancouverCanada
  4. 4.Enbridge Pipelines Inc.EdmontonCanada

Personalised recommendations